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A generic integrated line detection algorithm (GILDA) is pre-
sented and demonstrated. GILDA is based on the generic graph-
ics recognition approach, which abstracts the graphics recognition
as a stepwise recovery of the multiple components of the graphic
objects and is specified by the object–process methodology. We de-
fine 12 classes of lines which appear in engineering drawings and
use them to construct a class inheritance hierarchy. The hierarchy
highly abstracts the line features that are relevant to the line detec-
tion process. Based on the “Hypothesis and Test” paradigm, lines
are detected by a stepwise extension to both ends of a selected first
key component. In each extension cycle, one new component which
best meets the current line’s shape and style constraints is appended
to the line. Different line classes are detected by controlling the
line attribute values. As we show in the experiments, the algorithm
demonstrates high performance on clear synthetic drawings as well
as on noisy, complex, real-world drawings. c© 1998 Academic Press

Key Words: line detection; dashed line detection; arc segmenta-
tion; object–process methodology; object–process diagrams; graph-
ics recognition; line drawings; engineering drawings interpretation;
raster-to-vector conversion; CAD conversion.

1. INTRODUCTION

Lines are the most basic graphical primitives in line drawings
in general and in engineering drawings of all categories in par-
ticular. Humans find it easy to recognize the styles and shapes
(geometric forms) of lines, because their well-developed visual
perception looks simultaneously at related areas and can even
“fill the gaps” between consecutive segments. Machines do not
possess this natural ability and therefore the task of recogniz-
ing lines of various styles (especially discontinuous lines) and
shapes by machines is nontrivial, as we show in this paper. In
engineering drawings, lines are assigned meanings through dif-
ferent attribute value combinations of their thickness, style, and
shape. For example, in mechanical engineering, the linethick-
nessattribute is used to differentiate between object contour and
annotation graphics. Different drawing standards define differ-
ent groups of line width values. The ISO drawing standard [1]
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requires that the line width be within the range of 0.18∼2.0 mm,
while the Indian Standard Institute (ISI) standard [2] requires
that the line width be from of 0.1∼1.2 mm. However, all draw-
ing standards [1–4] define only two legal line thickness values:
thick andthin, where the width of a thin line is somewhere be-
tween 1/3 and 1/2 of the width of a thick line.

The linestylerefers to the continuity of the line. The four pos-
sible style values are solid (continuous), dashed, dash–dotted,
or dash–dot–dotted. The style alone, or the combination of style
and thickness, define thefunctionor semanticsof the line. The
function of each combination in the ISO drawing standard [1]
is listed in Table 1. Figure 1 demonstrates typical applications
of different line semantics. Other drawing standards [2–4] de-
fine the line semantics in a similar manner. Usually, thick solid
lines represent visible contours in 2D projections of 3D objects,
while thin solid lines are mainly dimensioning and leader lines
used for annotating these objects. Dashed lines delineate hid-
den contours of geometrical objects. Dash–dotted lines represent
symmetry axes of symmetrical objects. Finally, dash–dot–dotted
lines, which are less frequently used in engineering drawings,
serve as auxiliary lines. ISI [2] does not even define this style.

The lineshapedefines mainly the geometry of the 2D ortho-
graphic projection of the 3D objects. It can be straight, circular,
elliptic, free curved, or any other geometric shape. The termline
detectionpertains to the identification of all the three attribute
values of the lines, i.e., the thickness, the style, and the shape.

In view of the different functions and semantics of the vari-
ous line thickness, styles, shapes, and lexical ambiguities (e.g.,
C1 and D1, E1 and F1, E2 and F2), correct recognition of all
these line attributes is an important prerequisite for high-level
interpretation of engineering drawings. Line detection has been
a heavily researched subject in the context of engineering draw-
ings interpretation during the past 20 years, and many algorithms
and systems for line detection have been developed [5–11]. The
solid straight line segment, which we callbar, is the most com-
mon line object in engineering drawings. It is only natural that its
recognition has been the primary objective of the vast majority of
the line-detection algorithms. The detection of this class of lines
is usually done by the vectorization process. Postprocessing re-
finement is employed by some of these algorithms to improve
the bar detection accuracy. Solid polylines, which may be either
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TABLE 1
Line style Defined and used by ISO Standard Engineering Drawings

FIG. 1. Illustration of the use of various of line types in ISO standard engineering drawings [1].
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real polylines, formed by chaining of bars, or approximations
of curved lines, also result from vectorization. Refinement is
required if the polyline is an approximation of a curve.

Bars and polylines are relatively easy to detect, while arcs
are more difficult, due to their complex geometry. For example,
bars can be easily segmented from the run-length coded image
in the first two steps (first long horizontal bars and then thin
vertical bars) of the four consequential steps for music scores
recognition [11]. However, although quite a few arc segmen-
tation algorithms have been developed, e.g., [12–14], the task
still seems be to a tough problem. The algorithm in [12] em-
ploys Hough transform (HT), which is a conventional method
for object extraction from binary images. HT is normally used
for arc segmentation in case of isolated points that potentially
lie on circles or circular arcs. HT’s high complexity in both time
and space makes such arc segmentation algorithms less practical
for engineering drawings. The algorithm in [13] belongs to the
curvature estimation methods. Motivated by object recognition,
the aim of these algorithms is to extract meaningful features
from objects by estimating their edge curvature. To produce the
desired input of the one-pixel-wide digital curve, curvature es-
timates require heavy, pixel-based preprocessing, such as edge
detection or thinning. Algorithms such as [12] and [13] cannot
detect the line thickness. Perpendicular bisector tracing (PBT)
[14] is the first vector-based method of arc segmentation. As it
examines only the bar fragments output by the vectorization pro-
cess, it is efficient in both time and space. All arc segmentation
algorithms discussed above are designed to segment only solid
arcs. Research on the detection of arcs of other styles is rare.
In the process of arc segmentation reported in [17], Chenet al.
use some patterns and clues that the line segments, vectorized
from an arc, constitute a chain of pseudo-line segments (PLS)
that are shorter than some statistical threshold and are delimited
between two long straight lines.

Line style detection has also been studied by several groups
[7–10, 15–19], but it is treated only as a small, side issue in these
works. Paoet al. [15] use a HT-based method to detect dashed
circles and dashed straight lines in several steps. This pixel-based
method segments one class of dashed lines in each step and it is
computationally expensive. Boattoet al. [8] use a semi-vector-
based method to find dash segments which have special graph
structures. Other groups use vector-based algorithms to detect
discontinuous lines. Vaxiviere and Tombre’s Celesstin system
can detect both dashed lines and dash–dotted lines according to
the French Standard NF E 04-103 [9]. Joseph and Pridmore [10]
have dealt with finding dashed lines in engineering drawings
by looking for chains of short lines within the ANON system.
Lai and Kasturi [16] have done work on detecting dashed lines
in drawings and maps. They attempt to recognize dashed lines
by linking short isolated bars under certain conditions in three
passes. The dashed lines are not necessarily straight, as is the
case in maps. Chenet al. [17] use the same method as in [16]
to detect dashed lines of several patterns in the refinement of
vectorized mechanical drawings. Agamet al.[18] and Doriet al.

[19] have recently investigated the detection of dashed and dash–
dotted lines with straight and curved shapes. The algorithm in
[18] is pixel-based. The image of dashes is first separated from
the drawing image and is then processed using a set of tube-
directional morphological operators to label the dashed lines.
The algorithm in [19] is vector based; it applies the Sparse Pixel
Vectorization algorithm [20] as a preprocessing step to produce
solid vectors from image drawings. The algorithm examines
only these bars instead of pixels and is therefore time efficient.

In spite of the existence of line detection algorithms and the
systems reported above, no research report has yet proposed to
detect all classes of lines in a generic, unifying algorithm. As
of now, each class of lines requires a particular detection algo-
rithm. One possible reason for the lack of a generic approach is
the fact that most researchers have done this task as a low-level
stage in a drawing understanding system for a particular domain,
where only a limited subset of the line types are relevant. More-
over, in the process of detecting each class of lines, almost all
methods cluster all the potential constituent line segments all at
once, while the line geometry and style are determined later. This
blind search procedure frequently introduces inaccuracies in the
grouping of the line segments, which ultimately account for in-
accurate line detection. A more flexible and adaptive approach is
to constantly check the line geometry and style while grouping
the line segments. Indeed, this is the approach we follow in this
work.

In this paper, we present the generic integrated line detection
algorithm (GILDA), which detects all the major line classes that
show up in engineering drawings. GILDA encompasses the iden-
tification of the two thickness values—thick and thin—the four
style values—solid, dashed, dash–dotted, and dash–dot–dotted
lines—and three shape values—straight, circular, and free-form
curve. By combining the four line styles with the three line
shapes, we define and detect a total of 12 classes of line objects
that appear in engineering drawings. These classes include solid
straight line (bar), solid arc (or simply, arc), solid polyline (or
simply, polyline), dashed straight line, dashed arc, dashed poly-
line, dash–dotted straight line, dash–dotted polyline (see J1 in
Fig. 1), dash–dot–dotted straight line, dash–dot–dotted arc, and
dash–dot–dotted polyline.

Examining the characteristics of these line classes, we ob-
serve generic features at several levels. These are used to build
the class inheritance hierarchy. The generic integrated line de-
tection algorithm is based on this class hierarchy as well as on
the generic graphic recognition algorithm, described in [21, 22].
The underlying mechanism of GILDA is a sequential stepwise
recovery of line segments that meet certain thickness, style, and
shape requirements. Rather than finding all the vector compo-
nents of the graphic object at the same time, as is done in most
current line-detection algorithms, we find for the line being de-
tected only one new line segment that best meets the condi-
tions constrained by the thickness, style, and shape attribute
values. Before searching for the next line segment, we update
the current line attribute values. This way, the current line is
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extended for as long as possible, while avoiding many false alarm
detections.

GILDA is applied to the line fragments (bars and polylines)
resulting from the sparse pixel vectorization (SPV) procedure
[20]. It has been thoroughly tested as the basis of the line detec-
tion module developed within the machine drawing understand-
ing system—MDUS [22]. SPV finds consecutively the medial
axis points of a black area every several pixels by calculating
the middle points of its crossing black runs. It therefore pre-
serves the shape information (geometry and width) of lines. This
shape preservation is essential for postprocessing and higher
level graphics recognition, especially if no reference to the orig-
inal image is assumed. The input of GILDA can be the output of
any vectorization system, as long as it is a set of vectorized
line segments. This set may include bars (“monolines”) and
polylines. Experimental results and their evaluation using the
performance evaluation protocol for line detection algorithms
described in [23] are also presented and discussed.

The rest of the paper is organized as follows. In Section 2
we define the 12 line classes and the class inheritance hierarchy.
In Section 3 we briefly introduce the algorithmic representation
of object–process diagram (OPD) [24]. We then use it to de-
scribe the generic graphic object recognition method [21, 22]
and GILDA, on which it is based on. In Section 4 the syntax of
the various line styles within GILDA is specified. In Section 5
we elaborate on the syntax of line shapes. In Section 6 we present
additional specifications within GILDA which are required for
the detection of particular classes of line objects. In Section 7
we present and evaluate experimental results, and we conclude
with a discussion in Section 8.

2. LINES AND THEIR ATTRIBUTES

2.1. Line Classification

The terms defined below are used throughout the work.

(1) Line—a generic name of an abstract class of graphic ob-
jects in line drawings, each of which is the trace of a nonzero
width pen that moves from a start point to an end point, follows a
certain trajectory, which is possibly constrained by a geometric
function and optionally leaves invisible segments according to
some pattern.

The width of the pen is called theline width. The start point
and the end point are called theendpoints. The trajectory is
called theline medial axis. The geometric form of the line me-
dial axis is called theline shape. The alternating pattern of visi-
ble and invisible segments, which is determined by the segment
lengths and sequence pattern, is called theline style. The visi-
ble and invisible segments are calleddashesandgaps, respect-
ively.

We only considersimple lines, i.e., lines that do not inter-
sect with themselves. All lines share the following common
attributes.

• A line has two endpoints, which limit the extent of the line.
Circles and polygons may also be considered as lines whose two
endpoints coincide.

• A line has a unique, ideally constant, nonzerowidth be-
tween the two endpoints.

• A line is characterized by thestyleattribute, whose values,
explained in Definitions (2)–(6), are solid, dashed, dash–dotted,
or dash–dot–dotted.

• A line is characterized by theshapeattribute, whose values
are straight, circular arc, or polygonal, as listed in Definitions
(7)–(9).

(2) Solid line—a line whose style is solid, which means that
the entire line is continuously visible and traceable from end
to end. In other words, it consist of a single dash and no gap
between the two endpoints.

(3) Discontinuous line—a line whose style is not solid, that
is, it consists of at least two dashes separated by one gap.

(4) Dashed line—a discontinuous line whose dashes are rel-
atively equal and long, and whose gaps are relatively equal and
short.

(5)Dash–dotted line—a discontinuous line whose dashes can
be distinctly classified as long and short, alternatively. The short
dashes are calleddots. The dashes within each group are of
relatively equal lengths. At least in handmade drawings, the two
dashes at the two line ends are usually long.

(6)Dash–dot–dotted line—a discontinuous line similar to the
dash–dotted line, except that every dot of the dash–dotted line is
replaced with a dot–gap–dot pattern (two neighboring dots with
a gap between them).

(7) Straight line—a line whose medial axis is constrained by

ax + by = c, (1)

where (x, y) is the coordinate pair of any point on the line’s
medial axis, whilea, b, andc are parameters. The line is limited
by two endpointsp0(x0, y0) and p1(x1, y1).

(8) Circular line—a line whose medial axis is constrained by

(x − xc)
2 + (y − yc)

2 = r 2, (2)

where (x, y) is any point on the line’s medial axis, while (xc, yc)
is the circular center andr is the circular radius. The line is
limited by the two endpointsp0(x0, y0) and p1(x1, y1) going
counterclockwise fromp0 to p1. The two endpoints may coin-
cide when the circular line is a full circle.

(9) Polygonal line—a line whose medial axis is represented
by a sequence ofN characteristic pointspi , wherei = 0, 1, . . . ,

N −1. The medial axis segment between every two neighboring
characteristic pointspi and pi +1 is constrained by

ai x + bi y = ci i = 0, 1, . . . , N − 2, (3)

where (x, y) is the coordinate pair of any point on the line’s
medial axis between two pointspi (xi , yi ) and pi +1(xi +1, yi +1),
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TABLE 2
The 12 Line Classes Obtained by Combining the Four Line Styles and Three Line Shapes

Style

Shape Solid Dashed Dash–dotted Dash–dot–dotted

Straight Bar Dashed straight line Dash–dotted straight line Dash–dot–dotted straight line
Circular Arc Dashed arc Dash–dotted arc Dash–dot–dotted arc
Polygonal Polyline Dashed polyline Dash–dotted polyline Dash–dot–dotted polyline

while ai , bi , andci are parameters. The entire polygonal line is
limited by the two endpointsp0(x0, y0) andpN−1(xN−1, yN−1).
The polygonal line may be a closed polygon whose characteristic
start and end points coincide.

A polygonal line is usually composed of a sequence of solid,
equal-width lines linked end to end with optional intermediate
gaps. It may also be used to approximate all line shapes other
than straight and circular arc forms, including some high-order
and free-form curves.

Combining the four line styles and three line shapes, we obtain
the following 12 line classes, which are listed in Definitions
(10)–(21) and summarized in Table 2.

(10)Bar—a solid straight line.
(11)Arc—a solid circular line.
(12)Polyline—a solid polygonal line consisting of a chain of

equal-width bars linked end to end.
(13) Dashed straight line—a line whose style is dashed and

whose shape is straight.
(14) Dashed arc—a line whose style is dashed and whose

shape is circular.
(15)Dashed polyline—a line whose style is dashed and whose

shape is polygonal.
(16) Dash–dotted straight line—a line whose style is dash–

dotted and whose shape is straight.
(17)Dash–dotted arc—a line whose style is dash–dotted and

whose shape is circular.
(18)Dash–dotted polyline—a line whose style is dash–dotted

and whose shape is polygonal.
(19) Dash–dot–dotted straight line—a line whose style is

dash–dot–dotted and whose shape is straight.
(20) Dash–dot–dotted arc—a line whose style is dash–dot–

dotted and whose shape is circular.
(21) Dash–dot–dotted polyline—a line whose style is dash–

dot–dotted and whose shape is polygonal.

2.2. The Inheritance Hierarchy of Line Classes

The object–process methodology (OPM), originally devel-
oped for information system analysis [24], has been extended to
describe systems design [25] and algorithm specification [26].
It combines ideas from object-oriented approaches (OOA, e.g.,
[27]) and data flow diagrams (DFD, e.g., [28]) to model both
the structural and procedural aspects of a system in one coherent
frame of reference. The object–process diagram [24, 26], which

is the graphic language of the object–process methodology, is
explained in more detail in Section 3.1.

We use an OPD to graphically illustrate the class hierarchy
of line objects in Fig. 2. At the root of the hierarchy is the class
Line. Line is an abstract class because its style and shape at-
tributes are not specified. Each shape of line is a lower level
abstract line class, whose shape is specified but the style is not.
There are three such classes: StraightLine, CircularLine, and
PolygonalLine. Each line style is also represented by an ab-
stract line class with the line style specified and the line shape
unspecified. These classes are SolidLine, DashedLine, Dash–
dottedLine, and Dash–dot–dottedLine. An abstract class named
DiscontinuousLine is also inserted into the hierarchy as an ab-
straction of the three line classes that have gaps in their objects,
i.e., DashedLine, Dash–dottedLine, and Dash–dot–dottedLine.
Finally, the 12 concrete line classes are located at the bottom
of the hierarchy. The line attributes in each concrete class are
fully specified through multiple inheritance from two abstract
classes, one specifying the line shape and the other specifying
the line style.

To avoid the inheritance of two copies of the Line object by
each one of the 12 concrete classes, as normally happens in a
multiple inheritance hierarchy—one through the line shape class
and the other through the line style class—we implement virtual
inheritance, which is symbolized by the dotted triangle between
Line and each one of its immediate specializations (inheriting
classes).

3. THE GENERIC INTEGRATED LINE
DETECTION ALGORITHM

Since all line classes share many common features (attributes
and methods), we use these features to construct the generic
integrated line detection algorithm, which is described using a
set of object–process diagrams [24, 26]. To be able to freely use
OPDs, we briefly explain the essential terminology, syntax, and
semantics of the object–process diagrams.

3.1. Brief Introduction to Object–Process Diagrams

Being the graphic language of the object–process methodol-
ogy [24], OPDs are graphic representations ofobjects(persis-
tent things) andprocesses(transient things) in the universe of
interest, along with the structural and procedural relationships
among them. The legend in Fig. 3 shows the graphic symbols
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FIG. 2. OPD of the inheritance hierarchy of the classes of line objects.

discussed below. Relationships among objects (as well as among
processes) are structural. They includeaggregation, generaliza-
tion (which inducesinheritance), andcharacterization(which
exists between an object and a thing that characterizes it). It
therefore may occur between an object class and a process (in
which case the process is referred to as amethodor, in C++,
member functionof the class). Inheritance may also exist among
processes (in which case, these processes are similar to virtual
functionsin C++ terminology).

The relationship between an object and a process is usually
procedural. Procedural relations includeagent, instrument, ef-
fect, consumption, and result links. An agent is an intelligent
object that is involved in the process execution, such as a person
or a department. An instrument is another object necessary for
a process execution. Anaffectee (affected object) is an object
whose content (set of attribute values) is both used by the pro-
cess and changed by it. Aconsumee (consumed object)is an
object that is destructed by the process, as in the C++ “delete”
statement, such that it no longer exists after the process has
terminated. Aresultee(resulting object) is a new object con-
structed by the process execution, such as the object generated
in the “new” C++ statement. Anownerof a process is the unique
object that owns that process. An owner may be an agent, an
instrument, an affectee, or even a consumee of the process, but
not a resultee. It is not mandatory for a process to have an owner.
A process with no owner is called astandalone processand can
be implemented as a function in C and C++. The procedural
relation is expressed bylinks between an object and a process
in OPD. A link can be thought of as a data flow as used in data
flow diagrams (DFDs).

The control flow in an OPD is expressed bycontrol links. A
control link, depicted by a dashed arrow, may go either from a
process to a process, in which case the second process is executed
following the termination of the first process, or from a state
of an object to a process, in which case that state invokes the
execution of the process, as is the case with a branch control-
flow mechanism (if–then or case statements). Control links may
form a cycle, which indicates some kind of iteration.

Procedural links are always direct in the sense that there is
nothing between the object and the procedurally linked process.
Structural links, on the other hand, are frequently transitive and
hence may be indirect. Indirect structural relationships are de-
picted by dotted lines. OPDs can be recursively scaleable to
show different levels of details of objects and processes and
their relationships. Process blowup, which is a type of upscal-
ing or zoom in, is particularly useful for describing algorithmic
processes at increasing levels of detail. The graphic symbols of
the OPD terminology are shown in the object–process diagrams
legends in Fig. 3. To simplify reading of the OPDs, one should
first focus on the dynamic part, i.e., the processes and their input
and output objects. Structural elements such as instantiation can
be referred later.

3.2. The Generic Graphic Object Recognition Approach

Any particular class of line objects can be detected following
the same pattern of the generic graphic object recognition ap-
proach [21, 22]. This approach advocates a two-step procedure,
based on the hypothesize-and-test paradigm. The first step is
thehypothesis generation, in which we assume the existence of
a graphic object of the class being detected by finding its first



    

426 LIU AND DORI

FIG. 3. OPD illustration of the Graphics Recognition Algorithm (Process): (a) top level OPD, (b) explosion of the Recognition process in (a), and (c) explosion
of the Construction process in (b).

key component. The second step is thehypothesis test, in which
we prove the presence of such graphic object by constructing it
from its first key component and its other components that are
detected serially. An application of the Generic Graphic Object
Recognition Algorithm is shown in the top-level OPD of Fig. 3a,
in which the Recognition process, owned and performed by the
graphic database (GDB), takes a Graphics Class (such as one of
the 12 concrete line classes in Fig. 2) as an argument (instrument)
and updates GDB with the newly recognized graphic objects. Its
two constituent processes are shown in the OPD of Fig. 3b, in

which the Recognition process in the OPD Fig. 3a is blown up. In
Fig. 3c, the Construction process of Fig. 3b is blown up to reveal
the following algorithmic details. An empty Graphic Object of
the Graphic Class is first created by the “new” process. By the
FillWith process it is then filled with the Key Component ob-
ject found by the FindKeyComponent process and transferred
into the Construction process in Fig. 3b. The Graphic Object
is further extended by the Extension process as far as possi-
ble in all possible directions by a stepwise recovery of its other
components.
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3.3. Applying the Generic Recognition to Line Detection

To apply the generic graphic object recognition approach to
line detection, we must “instantiate” it with the appropriate line
syntax and semantics. To this end, the processes of FindKey-
Component, FillWith, and IsCredible should be specified. Find-
MaxExtensionDirections and Extension can be specified gener-
ically at the highest level of the class Line. FindKeyComponent
is the materialization of the hypothesis generation, where a first
key component is selected for the hypothesized line. The details
are specified in Section 6.2.

As defined in Section 2.1, all lines have exactly two endpoints,
so a line can have at most two extension directions, one from each
endpoint outward. The result of the FindMaxExtensionDirection
process is therefore 2 for all line classes.

The details of the Extension process blown up in the OPD
of Fig. 4a follows next. A Sorted Extending Candidate List is
found first. Each candidate is then tested for extendibility to be
joined to the current line. The extendibility test includes the pro-
cesses StyleCheck and ShapeCheck. If the candidate passes the
test, the current line is updated using the candidate by StyleUp-
date and ShapeUpdate and the process ends successfully. If not,
SequentialRetrieval takes the next candidate in the list, if there
is any, to perform the same procedure. If no candidate passes
the test, the process ends unsuccessfully. The Extension pro-
cess is designed to apply to the Class Line, i.e., to all line classes
by abstracting some of its services, as shown in Fig. 4a. The
processes ShapeCheck and ShapeUpdate characterize the Line
Shape Class, while the processes StyleCheck and StyleUpdate
characterize the Line Style Class. The Concrete Line Class may
be any one of the 12 concrete classes defined in Section 2.2.
The Line Shape Class may be Straight Line, Circular Line, or
Polygonal Line. The Line Style Class may be Solid Line or
Discontinuous Line.

Figure 4b shows the explosion of the FindExtendingCan-
didate process, shown in Fig. 4a. In the process FindExtend-
ingCandidate, an extending area, ExtendingArea, is first con-
structed by the GetExtendingArea process, which yields a square
area stretching from the current extending point outward along
the direction tangent to the line at this point. The square size is
determined by the allowable gap size of the line width and style.
Each one of the graphic primitives found within ExtendingArea
is checked for being as extending candidate of the line currently
being detected. The first process within the candidacy test is
the thickness test, implemented by the process ThicknessTest.
ThicknessTest succeeds if the absolute difference between the
current line width and extending candidate width is less than a
predefined threshold, which, in our application, is set to 2 pixels.
The collinearity of the line and the candidate is then checked
by the process CollinearityTest, which requires that the angle
formed by the two segments be smaller than an adaptive thresh-
old, which is 180◦ divided by the candidate ratio of length to
width. It is normally between 15 and 60◦. Finally, the Proximi-
tyTest process checks if the distance between their closest ends
is no more than an adaptive threshold determined by the line

width and style. The proximity threshold used in our applica-
tion is twice the average gap for discontinuous lines and twice
the line width for solid lines. If the graphic primitive passes all
three tests, it is inserted into the Candidate List sorted by in-
creasing distance order. In Fig. 4b, the process ThicknessTest
characterizes the Line Class at the root level, while Proximi-
tyTest characterizes the Line Style Class, since only the allow-
able distance between two components determined by the line
style is involved in the calculation, and CollinearityTest can only
be specified by the Line Shape Class.

The line style and shape detection details within GILDA ap-
pear in the following two sections.

4. LINE STYLE DETECTION

4.1. Gap Specification

We define the gaps between two neighboring component frag-
ments of a line as follows. For solid lines, although there should
be no gap at all, gaps resulting from noise as long as twice the line
width are allowed. After passing the candidacy test, two neigh-
boring components separated by a gap are linked and the gap is
filled. For discontinuous lines, the gap can be as long as twice the
average gap and no shorter than twice the line width. The maxi-
mum gap length allowed by the line style is used as a parameter
by the GetExtendingArea and ProximityTest processes.

4.2. Dash and Dot Constraints

Candidates of discontinuous line components can be either
solid lines or discontinuous lines. If the candidate is a solid line,
we first try to extend the candidate in the direction far away
from the discontinuous line before we test it for being a new
component of the discontinuous line. We try to extend it as a
solid line but with the line shape of the discontinuous line being
extended. By doing so, we may obtain a longer dash than the
original candidate, which is broken due to noise gaps. After the
candidate extension, the newly extended line is used as the can-
didate in the StyleCheck and ShapeCheck processes that follow.
If the candidate is a discontinuous line, we do not extend it.

During the discontinuous line extension, we constantly update
the average gap length and the numbers and average lengths
of dashes and dots separately. If the candidate is a solid line,
we first define the candidate as a dash or dot and then check if
the candidate is consistent with the dash or dash–dot pattern. We
require that a new dash be shorter than three times the average
dash length and longer than one-third of the average dash length.
If the candidate is shorter than one-third of the average dash
length, it is a dot, otherwise it is a dash. This information and its
length are used in the StyleCheck and StyleUpate processes. If
the candidate is a discontinuous line, its average gap length, as
well as the numbers and average lengths of its dashes and dots,
are used in the StyleCheck process and StyleUpate processes.

As we note in Definition (5) in Section 2.1, we require that the
two components at the two ends of the discontinuous line not
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FIG. 4. (a) Blowup of Extension of Fig. 3c. (b) Blow-up of FindExtendingCandidate of Fig. 4a.

be dots but dashes, as commonly drawn. The number of dashes
and the number of dots of all discontinuous line objects is then
constrained by

N1/(N0 − 1) = (St− 1) (4)

whereSt= 1 for dashed lines, 2 for dash–dotted lines, and 3 for
dash–dot–dotted lines.N0 is the number of dashes andN1 is the
number of dots.

The dash–dot pattern is constrained as follows. Suppose we
assign numbers starting from 1 to the component from one end
of the discontinuous line to the other end. The first compo-
nent should be a dash, the (i ∗ St+ 1)th component should be a
dash, and the (i ∗ St− j )th component should be a dot, where
i = 1, 2, . . . , (N0 − 1), j is any number that meets the condition
St− 2 < j ≤ 0.

Equation (4) and the above requirement are used in the
StyleCheck process to check the dash–dot pattern. In addition,



         

A GENERIC INTEGRATED LINE DETECTION ALGORITHM 429

FIG. 5. Illustration of straight line extension.

StyleCheck also involves the gap check, which requires that the
new gap be between half and twice the cumulative average gap.

4.3. Discontinuous Line Parameter Update

If the candidate passes the StyleCheck and the ShapeCheck
discussed in the following section, we update its discontinuity-
related line parameters as follows.

The new average gap is calculated as (Gap+ Gapav ∗ (N0 +
N1 − 1))/(N0 + N1), whereGap is the current gap, andGapav
is the previous average gap.

The new average dash length is calculated as (length+
Dashav ∗ N0)/(N0 + 1), if the new component is a dash and the
new average dot length is calculated as (length+ Dotav ∗ N1)/
(N1 + 1), if the new component is a dot, wherelength is the
length of the new component,Dashav is the average dash length,
andDotav is the average dot length of the current discontinuous
line. Finally, the dash numberN0 or the dot numberN1 is in-
cremented by 1, depending on whether the new component is a
dash or a dot, respectively.

5. LINE SHAPE DETECTION

5.1. Straight Line Specification

Equation (1) is used in the ShapeCheck process for a straight
line. In real-life drawings, lines may not be strictly straight.
Therefore, we construct a strip (pipe) whose center line is the
medial axis of the straight line and whose width is the line width,
as shown in Fig. 5. Any straight candidate whose two endpoints
fall inside this strip can be used as the new component. We
take the closest candidate from the candidate list that passes the
StyleCheck process as the new component.

In the ShapeUpdate process that follows straight line exten-
sion, the new endpoint of the extended line in this direction is
updated as follows. If the new component is a long line, whose
length is longer than three times its width (“long candidate” in
Fig. 5), we use the far endpoint of the new component from the
extended line as the new endpoint. If not, we do not trust the new
component’s endpoints. Rather, the extended line’s endpoint is
set as the vertical projection of the far endpoint of the new com-
ponent on the medial axis of the current line, as depicted in
Fig. 5 for “short candidate.”

5.2. Circular Line Specification

The ShapeCheck and ShapeUpdate processes are extensions
of the stepwise recovery arc segmentation (SRAS) algorithm
[29] that apply to all the line styles we handle.

In the ShapeCheck process, a dynamic potential arc center
area (PACA) is first defined, based on the current arc attributes,
as shown in Fig. 6. The PACA is a rectangle whose center is
the current arc center and two of its edges are parallel to the
current arc’s perpendicular bisector. The detailed calculation of
the PACA size is given in [29]. After the PACA is determined,
every point within it is checked for being a candidate of the new
center. The average radius is first calculated by taking the aver-
age of the distances between the candidate—the potential arc
center—and a number of characteristic points along the current
arc’s medial axis. Since every (solid) arc results from a polyline
or a group of polylines and bars, we use the original polyline
and bar characteristic points to represent the arc’s characteristic
points, as shown in Fig. 6. When adding a polyline segment to
the arc, we use the original polyline characteristic points in the
radius update calculation, as shown in Fig. 6a. When adding a bar
segment to the arc, we consider the two bar endpoints, as shown
in Fig. 6b. The variance of the distances from the potential center
to each one of these characteristic points is calculated for each
potential center within PACA. The candidate with the minimal
variance is picked as the final candidate. This point has yet to
pass a final test. The final test requires that (1) the difference
between the average arc radius calculated for this point and
the distance from this point to each one of its characteristic
points must be less than half the width of the current arc, and
(2) the difference between the same radius and the distance from
this final candidate point to each one of the edges of the polyline
formed by chaining all these characteristic points must also be

FIG. 6. Illustration of arc extension: (a) center determination when extended
by an arc and (b) center determination when extended by a bar.
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FIG. 7. Deviation direction requirement for polygonal discontinuous line ex-
tension.

less than half the width of the current arc. If the final center
candidate passes this test, it passes the entire ShapeCheck. The
ShapeUpdate process assigns this point as the new arc center and
extends the current arc with the new component. This process
also updates the arc endpoints using the farthest endpoint of
the newly added component, as done when we extend a straight
line. The extended arc is then checked as to whether it is a closed
circle. This is done by examining the circular distance between
its endpoints. If this distance passes the ProximityTest, discussed
in Section 3.3, it is defined as a circle.

5.3. Polygonal Line Specifications

The ShapeCheck process for polygonal lines is similar to that
of curved dashed line detection, discussed in [19]. For discon-
tinuous polygonal lines, we require that the new component
deviates from the gap between the current line and the new
component in the same direction (either clockwise or counter-
clockwise) as the gap deviates from the current line, as shown
in Fig. 7. For continuous polygonal lines, we require that any
new component candidate be only a bar or a polyline to avoid
linking arcs to polylines.

In the ShapeUpdate process, we add the original characteristic
points of the new component to the characteristic point list of the
current polygonal line, regardless of whether the new component
is a straight, circular, or polygonal line. By so doing, we keep the
detected polygonal line as the best approximation of the original
polygonal line image.

6. ADDITIONAL SUBTLE REQUIREMENTS

6.1. Line Width Update and Line Thickness Determination

The line width is updated as the weighted sum of the current
line and the new component with the weights taken as the corre-
sponding line lengths. The line thickness attribute (whose values
are “thick” and “thin”) is determined by examining a line width
threshold, calculated through histogramming and binarization
of the widths of line segments resulting from the vectorization
process [20]. If the line width is greater than the threshold, the
line is thick, otherwise it is thin.

6.2. Finding the First Key Component

As noted in Section 3.3, the detection of any concrete line
class is initialized by the FindKeyComponent process. The first

key component is defined as follows. For a dashed line, the first
key component can be any solid line of any length. For a dashed
straight line, it can only be a bar. For a dashed arc, it can be a bar
or an arc. For a dashed polyline, it can be a bar, an arc, or a poly-
line. For dash–dotted and dash–dot–dotted lines, the first key
component can only be a dash and not a dot. This requirement
is met if the dash in question is a solid line whose length is more
than three times it width. The shape requirement of the first key
component for the dash–dotted and dash–dot–dotted line styles
is identical to that of the dashed lines, as specified above.

6.3. The Final Credibility Test

Since the line is obtained by a stepwise extension procedure,
the cumulative error may be so large that the extended line de-
viates from the original requirements and violates original as-
sumptions about shape and/or style. To avoid this kind of false
alarm, a final credibility test is implemented by the Credibili-
tyTest process, which verifies the correctness of the detected line
attribute values after all the extension cycles in both directions
are finished.

The CredibilityTest process includes tests of both shape and
style. Only those detected liens that pass these two tests are
finally accepted and used to update the GraphicDataBase. The
shape test for a straight line requires that the distance between
each one of the characteristic points of the line’s components
and the line’s medial axis be less than half the line width. For
circular and polygonal lines, the final shape test does nothing
and lets all lines pass.

The CredibilityTest also includes a style test, which checks the
minimal number of both components and patterns. The minimal
number of components is 2 for dashed lines, 3 for dash–dotted
lines, and 4 for dash–dot–dotted lines. For a solid line, although
it is unnecessary to require a minimal number of components,
we do require that at least two original components be involved,
otherwise we can simply keep each one of the original com-
ponents as a solid line. The final pattern test uses Eq. (4) as
the criterion and gives a tolerance of 20%. We also require that
the average dash length be at least twice the average dot length,
otherwise the dots may be considered as dashes of a dashed line.

7. EXPERIMENTAL RESULTS AND EVALUATION

We have implemented the GILDA as the basis of the line de-
tection module within the machine drawing understanding sys-
tem [22], which is developed in C++ onSGI Indy andIndigo2
workstations (IRIX5.3 ) and SUN Sparcstations (Solaris2.5).
The executable codes of these two versions are available from
the addresses in [30]. The detection order of the line classes is
shown in the OPD in Fig. 8. The preprocessing is a sparse pixel
vectorization procedure [29], which yields vector fragments—
bars and polylines—from the original scanned raster file for
further processing in the line detection process.

We have tested the GILDA with about 50 real-world drawings
and obtained very good results, as the following examples show.
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FIG. 8. OPD of the line detection order.

Figure 9 is the line detection results of (a) SPV and (b) GILDA
applied on the drawing image presented in Fig. 1. All the de-
tected lines in Fig. 9b are displayed using a single line width
and solid line style. As we can see from Fig. 1, the drawing is
noisy due to paper quality and scanning processing. The line
edges are not smooth. There is even a broken dash segment in
the dash–dot–dotted line at the bottom. It is also very complex
due to the presence of not only almost all line classes but also
a complex mixture of line classes, e.g., lines that are tangent to
arcs, lines which intersect at very small angles, and discontin-
uous lines which pass through hatched areas. However, as we
can see from Fig. 9b, almost all arcs (including circles) and dis-
continuous lines have been correctly detected. In addition, as
indicated inside Fig. 9b, some discontinuous lines are broken
and some detected arcs are false alarms due to the image quality
and complexity. The two dashed lines across two hatched areas
(the vertical one at the left hand and the horizontal one in the
middle of the drawing) are also detected correctly. The dash–
dot–dotted line at the bottom of the drawing is also fully detected
despite the break in one dash. The failure of arc segmentation
is that the open angle is so small that SPV produces only a bar
on the arc image. The common arc false alarms are due to the
polyline shape formed by several short bars.

Figure 10a is an ANSI [3] drawing with many solid and
dashed circles. The intermediate result of sparse pixel vector-
ization (SPV) is shown in Fig. 10b. The result of line detection
by the GILDA is displayed in Fig. 10c in solid lines with a single
line width. The drawing is also complex, since there are many
concentric circles and small open angle arcs. The bigger dashed

circle consists of only short bar dash segments and is intercepted
by many other lines at small angles. However, all solid arcs and
circles are correctly detected, but several arcs are false alarms.
Three out of the four small dashed circles are correctly detected.
The fourth small dashed circle at bottom right is not detected be-
cause its top left dash is too long. Even the biggest dashed circle
outside the biggest solid circle is correctly detected, though it is
broken in two parts. The top part is longer than 3/4 circle and
the bottom part consists of three dashes. This is because part of
an arc dash participates in a false arc (see Fig. 10c, bottom right)
and the environment is highly cluttered. Failure of finding one
dash may cause the extension to halt in the current direction.
All eight straight slanted short dashed lines are also correctly
detected. The two dash–dotted lines marking the centers for the
central concentric circles are also detected correctly, while the
four dash–dotted lines marking the four small hole centers are
detected as several broken dash–dotted lines, because the exten-
sion fails to span the long gap caused by the intersection of the
biggest thick arc at a small angle. Another detected dashed line
(vertical at the right bottom) is a false alarm caused by joining
the thick bar with a tail of a leader (arrow) at the bottom right
of the drawing. Occasionally, the dashed line false alarms may
appear due to the dashed patterns formed accidentally by several
irrelevant line segments.

Figure 11 is a clean drawing taken from ISO [1] with solid
and dash–dotted circles, and straight dash–dotted lines, which
we used to test the GILDA. Figure 11a is the original image and
Fig. 11b is the arc segmentation results, in which all the dashes
of the dash–dotted circles are detected as arcs. Figure 11c is
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FIG. 9. Line detection results by (a) SPV and (b) GILDA on the drawing image in Fig. 1.

the screen display of the final line detection results, where the
dark gray represents solid circles, while the light gray represent
detected dash–dotted bars and circles. All lines in this drawing
are correctly detected, except for the upper and lower dash–
dotted bars, which are shorter than those in the original drawing
because one dash of each is broken near the thick solid circle
already at the preprocessing stage.

We have also tested the GILDA for discontinuous and polyg-
onal line detection. The test image in Fig. 12a is manually pre-
pared using Microsoft Paintbrush software. Its sparse pixel vec-
torization (SPV) result is shown in Fig. 12b. The result of GILDA
is shown in Figs. 12c and 12d. In Fig. 12c, the detected polygonal
discontinuous lines are displayed with solid style and a single

line width. The discontinuous free from curves are very nicely
detected and only two of them are broken in one location each.
Figure 12d shows the detection results dumped from the screen,
where each discontinuous pattern is represented by a different
gray level.

We have automatically evaluated the GILDA on separate tasks
in [23] using the Vector Recovery Index (VRI), which is a sin-
gle measure of the accuracy of the detected lines compared with
their ground truths. It is an objective and comprehensive index
that involves the detection accuracy of the width, shape, style,
characteristic points, and the detection fragmentation and com-
bination. The arc detection capability of the GILDA depends on
the width and the open angle. Forπ/8 arcs with too thin (e.g., 1
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FIG. 10. Line detection results by GILDA on the an ANSI drawing: (a) image, (b) sparse pixel vectorization result, and (c) detected lines.

or 2 pixels) or too thick (i.e., when the distance from the chord
to the arc is less than half the width), the VRI can be as low as
around 0.40. For circles, the VRI can be as high as 0.97, which
is an exceptionally good result. The bar detection can also be as
high as more than 0.90 for clear and simple drawings [23]. We
have manually measured the vector ground truths of the image in
Fig. 11a and used it in the performance evaluation of the GILDA.
The ground truth lines and their detection evaluation are listed
in Table 3. The detected lines and their evaluation are listed in
Table 4. The overall Detection Rate (Dv) [23] for the entire draw-
ing, which results from the detection quality of all the ground
truth lines, is 0.81 and the overall False Alarm Rate (Fv) [23],
which results from all the detected lines, is 0.17. The VRI (which
is the average ofDv and 1−Fv) we obtained is 0.82, which is
acceptable [23]. However, this value is a little bit smaller than

TABLE 3
The Ground Truth Lines in Fig. 11a and Their Detection Evaluation

Ground Width End End Arc Arc Matched
truth (pixels) Shape Style point1 point2 center radius detected line Dv

0 9 Circle Solid 288,238 204 4 0.91
1 3 Circle Solid 288,238 163 6 1.00
2 8 Circle Solid 288,238 37 8 0.82
3 9 Circle Solid 867,248 149 5 0.91
4 3 Circle Solid 867,248 108 7 0.77
5 8 Circle Solid 867,248 36 9 0.74
6 3 Circle Dash–dotted 288,238 185 15 0.87
7 3 Circle Dash–dotted 867,248 129 16 0.71
8 3 Straight Dash–dotted 61,233 1040,250 13 0.76
9 3 Straight Dash–dotted 292,12 284,466 10 0.77

10 3 Straight Dash–dotted 869,98 864,418 12 0.77
11 3 Straight Dash–dotted 292,55 868,120 0,1,11 0.75
12 3 Straight Dash–dotted 285,425 865,378 3,14 0.43

Total 0.81

what we had expected since the result is quite good as evaluated
by human vision. From Tables 3 and 4, we can see the quality
of each line entities. For example, the detection quality of the
ground truth 12 (which is the lowest tangent dash–dotted line)
is only 0.43. This is mainly because it is not fully detected as a
whole dash–dotted line since it is matched with detected lines
3 and 14. Even a well-detected dash–dotted line as judged by
human vision—ground truth line 8 and detected line 13, which
is the central horizontal dash–dotted line, obtains a detection
quality value of only 0.76. This is mainly due to the fact that
the detected endpoints deviate from the ground truth. Human
vision cannot measure this small error. Another possible reason
is that the ground truths we measured are not precise, and this
is the very reason that we cannot trust the manually measured
ground truth for Figs. 9 and 10, which are quite complex. Hence,
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FIG. 11. GILDA performance on a real life ISO drawing: (a) image, (b) arc segmentation, and (c) discontinuous line detection.

their automated evaluation using the protocol in [23] is not
available.

The time performance of the GILDA including the SPV pre-
processing is listed in Table 5. For drawings with average size of
1000× 1000 pixels the processing is up to 30 s on SGI Indigo2.
The is quite fast compared to most of the currently available
systems. The time efficiency is also due to the stepwise exten-
sion, which avoids blind search in the entire drawing. The Planar

Position Index (PPI) [21] data structure, which indexes all line
entities using their planar positions and therefore facilitates the
area search for lines, also contributes to the efficiency of GILDA.

8. CONCLUSION

A generic and integrated line detection algorithm, based
on the generic graphics recognition approach is developed,
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FIG. 12. MDUS performance on a real life ISO drawing: (a) image, (b) sparse pixel vectorization, (c) arc segmentation, and (d) dashed line detection.

implemented, and evaluated. The algorithm abstracts the recog-
nition as a stepwise recovery of components of the graphic ob-
jects. We define 12 classes of lines that appear in engineering
drawings and use them to construct a class inheritance hierar-
chy which abstracts the line features used in the algorithm. The
line classification in the paper uses parameters that are more re-
laxed than those defined by drawing standards (e.g., ISO [1]) so
as to be adapted to human vision perceptions and line classifi-
cation. These standards define line types (thickness and styles)
but does not refer to shapes (geometry). The classification in

TABLE 4
The Detected Lines in Fig. 11c and Their Evaluation

Detected Width End End Arc Arc Matched
line (pixels) Shape Style point1 point2 center radius ground truth Fv

0 4 Straight Solid 352,60 374,62 11 0.63
1 5 Straight Solid 844,118 875,119 11 0.65
2 3 Straight Solid 355,407 355,408 1.00
3 5 Straight Solid 817,380 881,375 12 0.74
4 9 Circle Solid 288,238 203 0 0.09
5 9 Circle Solid 866,247 149 3 0.09
6 3 Circle Solid 288,238 163 1 0.00
7 3 Circle Solid 866,247 108 4 0.23
8 8 Circle Solid 288,237 36 2 0.18
9 8 Circle Solid 866,246 37 5 0.28

10 3 Straight Dash–dotted 291,11 283,466 9 0.24
11 3 Straight Dash–dotted 411,68 903,124 11 0.07
12 3 Straight Dash–dotted 868,79 863,418 10 0.28
13 3 Straight Dash–dotted 60,232 1038,249 8 0.23
14 4 Straight Dash–dotted 317,420 786,382 12 0.45
15 4 Arc Dash–dotted 351,64 351,63 288,238 185 6 0.13
16 4 Arc Dash–dotted 903,124 843,121 866,247 128 7 0.23

Total 0.17

this paper does not affect line type definitions in any standard
or software package (e.g., AutoCAD). It abstracts those defini-
tions by adding geometry factors to allow for refined recog-
nition which will be used at higher levels of understanding.
All line classes are stepwise extended to both ends. In each
extension cycle, only one new component, which best meets
the current line’s shape and style constraints is joined to the
line and the line is extended using it. The details of the algo-
rithm are presented at increasing levels of detail by a set of
object–process diagrams, which correspond to the actual C++
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TABLE 5
Time Performance of the GILDA (on SGI Indigo2)

Figure Size (pixels) Time (s)

9 1232× 810 28
10 824× 600 11
11 1056× 468 6
12 400× 800 1

code that implements the algorithm. The OPD set is instrumen-
tal in clarifying the data and control flow of the algorithm. We
use a rather complex inheritance hierarchy to abstract as much
as possible the line features in the algorithm. As we show in
the experiments, the algorithm demonstrates high performance
on a variety of real-life and synthetic drawings. It is robust in
some cases, such as line mixture, intersection, tangency, and
touching letters, due to the stepwise recovery procedure. It is
also time efficient due to avoiding blind search. The gener-
alization of line detection for all line shapes and styles is a
very significant achievement, as it provides for a single uni-
fying algorithm that is easy to maintain and improve, following
state-of-the-art software engineering principles of genericity and
reuse.

However, GILDA also produces false alarms, especially for
solid arcs, where several bars form polylines, as in some cases
in Figs. 9 and 10. Some solid arc false alarms may be avoided if
the threshold (half the line width) in the shape check is set to be
more strict (e.g., one quarter of the line width). But this would
also decrease the detection rate. The trade-off between detec-
tion and false alarms rates is a subject for further research. An
alternative is to introduce higher level knowledge from higher
level recognition and understanding and feedback. This is an-
other research subject. Occasionally, dashed line false alarms
may appear due to the dashed patterns formed accidentally by
several independent line segments. This could also be avoided
at higher levels of recognition. It should be noted that the lines
detected by GILDA are separate individual entities. GILDA is
not designed to integrate or group them into higher level enti-
ties, such as a dashed rectangle or a dimension set. These higher
level graphic objects will be detected at higher level understand-
ing phases, where more domain-specific syntax and semantics
are introduced.
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