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3D object reconstruction from 2D orthographic views has been a major research issue during the past
two decades. Existing algorithms assume coordinate-based, noise- and error-free input without
dimensioning annotation. The approach presented here assumes that the original input is a real-life
engineering drawing, in which the 2D geometry of each orthographic view is annotated with
dimensioning. Detected dimensions are translated into sets of constraints, one for each view, from
which proper dimensioning is validated and 2D minimal graphs are obtained. The method combines
elements from variational geometry, matrix algebra and graph theory to construct a composite
network describing the structural and topological relations among the various entities that combine the
3D object. This graph provides the basis for a complete 3D object reconstruction. The paper describes
the details of the method, and demonstrates it on a comprehensive example.

Keywords: 3D reconstruction, engineering drawings understanding, document analysis and recogni-

tion, orthographic views.

1. INTRODUCTION AND MOTIVATION

Engineering drawings have been traditionally used for
designing and communicating object information
among designers, customers, subcontractors and qual-
ity assurance professionals. Using CAD systems, the
process of design is interactive. Both geometric data
and annotations are stored in the CAD system database
and can be accessed and used for future design, or as
input for CAM systems. Prior to the introduction of
CAD/CAM systems, paper drawing models were the
major means of design. Numerous mechanical engin-
eering drawings of parts still exist in this form.
Significant progress in scanning devices and storage
technology has made the reconstruction of 3D objects
from paper engineering drawings a viable research
issue. A number of studies have provided partial solu-
tions for restricted cases.

This paper presents a new approach for reconstruc-
tion of 3D objects from engineering drawings that
extends the work described in Ref. 1. The approach
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combines the dual nature of engineering drawings with
elements of variational geometry, matrix algebra and
graph theory. Section 2 surveys approaches for recon-
structing 3D objects from orthographic views, intro-
duces criteria for classifying the methods, and discusses
their merits and shortcomings. In Section 3 the new
approach to 3D reconstruction is introduced and dis-
cussed. The description of the variational geometry
rule base and the graph theoretic elements, as well as a
comprehensive example are provided in Sections 4, 5
and 6, respectively.

2. 3D RECONSTRUCTION ALGORITHMS

A number of approaches and algorithms have been
developed over the past two decades to automatically
interpret user-supplied orthographic views for the
purpose of 3D object reconstruction.

The two main reconstruction approaches are the
wireframe-oriented bottom-up approach and the
volume-oriented approach. Existing algorithms within
each approach are categorized into those handling only
planar surfaces and those which manage more general
surfaces, including cylindrical, canonical, spherical and
toroidal. The brief survey in this section covers algor-



54 DOV DORI and MIRI WEISS: 3D ORTHOGRAPHIC VIEWS

ORIENTATION ~—> Wireframe Solid
SURFACE TYPE
Planar Wireframe-Planar Solid-Planar
Algorithms Algorithms
Complex Wireirame-Complex Solid-Complex
Algorithms Algorithms

Fig. 1. Classification of 3D reconstruction algorithms

ithms in both approaches. Within each approach a
distinction is made between algorithms that handle
planar surfaces only and those which handle more
general surfaces.

Figure 1 depicts the classification of 3D reconstruc-
tion algorithms. Each algorithm has two attributes:
orientation and surface-type. Orientation has two
values (instances): “wireframe” and “solid”, while
surface-type has the two values: “planar” and “com-
plex”. The Cartesian product of the two attribute
ranges yields four algorithm types. Each type features
multiple inheritance: it inherits one orientation value
and one surface-type value, giving rise to four families:
wireframe-planar algorithms, solid-planar algorithms,
wireframe-complex algorithms and solid-complex
algorithms.

2.1. The wireframe-oriented bottom-up approach

The use of wireframe-oriented bottom-up algorithms
is widespread. It employs fundamental topological
ideas, and features four major steps:

(1) Transformation of 2D vertices extracted from
orthographic views into 3D vertices.

(2) Generation of 3D edges from the 3D vertices.

(3) Construction of faces from the 3D edges.

(4) Formation of 3D objects from the 3D faces.

Idesawa’ has proposed the following definitions for
the terms used in the above scheme.

A solid is a body occupying a range in 3D space or a
partial space enclosed by several surfaces in 3D space.

A face is a segment of a surface which constitutes a
boundary between the solid and the exterior space. A
segment of the surface which has different properties
(e.g. curvature, position, direction, etc.) is regarded as
a different face.

An edge is an intersection of two faces.

A vertex is an intersecting point of three edges or
more.

Wireframe planar algorithms

One of the earliest wireframe reconstruction algor-
ithms of planar surface objects was formalized by
Idesawa.” It automatically generates a solid object from
a three-view engineering drawing. Lafue® presented an
algorithm which accepts as input two or three ortho-
graphic projections and is constrained to face-wise
projection drawings, collections of faces, rather than
edges and vertices. Preiss* suggested an approach in

which the input data is not restricted to representation
in a face-wise manner, and also handles solid and
dashed lines. In addition to the basic vertex, edge and
face entities, the definitions of visible and hidden nodes
are added and dashed lines are also treated. Haralick
and Queeney’ showed that understanding engineering
drawings is basically a labeling problem. Markowsky
and Wesley® presented an algorithm for fleshing out an
object described as a wireframe to a 3D object. The
algorithm handles cases with multiple solutions, and
deals even with pathological cases. Fleshing out
projections’ is an extension of the work in Ref. 6. The
algorithm finds polyhedral solid objects from 2D pro-
jections. In Ref. 8, Markowsky and Wesley survey
methods for automatically transforming 2D projections
into 3D models. They provide basic definitions for
Constructive Solid Geometry (CSG), Boundary
Representation (B-Rep) and Volume representations
of 3D objects. Approaches to volume reconstruction
are described, and difficulties are pointed out. The
wireframe and projection fleshing-out algorithm is pre-
sented as a partial solution to automatic transforma-
tions. Considering the list of unsolved problems on the
way to achieving complete 3D reconstruction, they
propose an interactive approach that would allow
progress in the translation and interpretation of geo-
metric data, and would enable a wider variety of
surfaces, to be handled.

Wireframe complex algorithms

Preiss’ presented the 3D reconstruction process as a
problem of a heuristic search for bodies with planar and
cylindrical faces. The approach is based on determining
vertices, edges and faces by a set of constraints. Sakurai
and Gossard” extended Wesley and Markowsky’s
algorithm’ by adding to the basic elements (face, edge,
vertex) the silhouette edges (lines and arcs) and the
tangent edges (lines and arcs). Lequette!’ presented an
algorithm for constructing 3D objects from ortho-
graphic views, that distinguishes between the general
case and a special case, in which only two views are
needed. This method is similar to that of Sakurai and
Gossard," but differs in the way in which it generates
tangent edges and solids.

2.2. Solid approach algorithms

Solid (volume-oriented) algorithms are based on
constructing 3D primitive subparts through translation
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sweep operations, and combining them to generate the
complete object. Aldefeld" suggested viewing a com-
plex part as being composed of elementary objects
belonging to a set of predefined classes. Recognition of
these objects is done by making use of knowledge
about the class-dependent pattern of their 2D represen-
tation. The term “primitive” denotes a basic element of
2D representation, such as arc, line, or circle. An
object for a 3D representation is termed a “composed
part”. In further work,” Aldefeld and Richter sug-
gested interpreting a 3D body from its 2D projections
by a user-guided process, while using automatic pro-
cedures where they can be relied upon. Nagasami er
al." extended and implemented Aldefeld’s work' by
defining two classes of objects that represent a wide
variety of objects. One class is obtained by translation
sweep operations with a planar base, an arbitrary
contour in one view and a uniform thickness in the
direction perpendicular to the base. The other class
consists of objects having an axis of symmetry. The
algorithm is implemented by a knowledge-based system
which interprets the orthographic views and represents
the reconstructed object. Chen et al.” introduced a
method for reconstructing 3D objects which may be
polyhedrons, cylinders, partial cylinders and their com-
posites. The algorithm consists of three stages:
decomposition, in which the input drawing is decom-
posed into several predefined types of subviews, recon-
struction, in which translational sweep and cutting
operations are used to reconstruct the corresponding
subpart of each set of subviews, and composition, in
which volume enclosure relations among various sub-
parts are utilized to compose the complete object,
which is represented by a CSG tree.

2.3. Problems with current solutions

The methods described are aimed at reconstructing a
3D object from orthographic views. As formalized by
Requicha,' the objects may be represented either by
CSG or by B-rep. None of the representations provides
a complete automatic procedure for the range of ele-
ments which are found in engineering drawings. The
following is a list of factors that prevent current meth-
ods from being capable of converting objects described
by conventional mechanical engineering drawings into
3D CAD objects.

Surface type

The surface types handled by current methods are
planar, cylindrical, conical and toroidal, respectively.
Most works (Wesley and Markowsky,®® Preiss,*
Idesawa® and Haralick and Queeney®) deal with poly-
hedral objects only. This is a major drawback, because
most engineering drawings contain bars (straight-line
segments), arcs and circles, denoting 3D objects which
are planar, cylindrical or toroidal. Only Aldefeld,?
Lequette’’ and Sakurai and Gossard”? handle non-
planar surfaces.

Computational complexity

Only Wesley and Markowsky® and Nagasami et al."
have treated the computational complexity involved in
the algorithms and in their implementation. Wesley
and Markowsky® indicate that their “Fleshing-out wire-
frames and projections” algorithms®’ are computa-
tionally very complex and sometimes unmanageable.
To reduce the computational load, they suggest an
interactive approach.

Assumptions about input style and quality

A major drawback, pointed out by Dori'’ and Dori
and Tombre,' is that all the methods surveyed above
assume a noise-free, idealized set of projections,
uncluttered by annotations or any other “irrelevant”
graphic entities, and free of any uncertainties about the
exact dimensions. This may be possible when the start-
ing point is a set of views generated with a computer,
available as formatted data structures. However, when
the reconstruction process has to start from a scanned
paper drawing, be it a manually prepared or a
CAD-based drawing, such idealized assumptions are
unrealistic. The combination of “image” and “anno-
tation” requires a level of human-like intelligence for
understanding this dual nature, which current methods
do not support. In addition, many methods assume that
the input is provided in a specific mode or order.
Lafue,’ for example, assumes that the different drawing
views are a collection of faces, drawn counterclockwise
or clockwise. Aldefeld!® assumes that creating the input
is based on a user-guided procedure.

3. SCHEME OF A PROPOSED APPROACH FOR
3D RECONSTRUCTION

The proposed approach for reconstructing 3D
objects from 2D engineering drawing is based on the
following three stages:

(1) high-level 2D orthographic view understand-
ing;

(2) analysis of topological relations and dimen-
sioning schemes in each 2D view using varia-
tional geometry elements; and

(3) 3D construction by merging the dimensioning
scheme of each 2D view into a common
dimensioning scheme for the entire object,
using graph-theoretic methods.

The top-level view of the approach is described in the
object-process diagram (OPD) of Fig. 2. An OPD" is
a graphic representation of the objects and processes in
the system with their structural and procedural rela-
tions. As the legend of Fig. 2 shows, objects and
processes are represented as rectangles and ellipses,
respectively. Effect links (arrows) lead from an affected
object to a process in which it takes part, or from a
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process to a resulting object. An instrument link (a line
ending with blank circle) leads from an enabling
object—the instrument—to the enabled process.

4. UNDERSTANDING 2D ORTHOGRAPHIC
VIEWS

For high-level information of an engineering drawing
to be extracted, it ought to be viewed as a dual, two-
faceted entity. One facet is that of the object’s geo-
metry, i.e. the graphics describing the contours of the
2D projections of the object on the drawing plane. The
other facet is the annotation—dimensioning and other
manufacturing directions—which complements the
information provided by the geometry. Normally, the
geometry itself cannot be accurate enough for defining
and manufacturing the object without the additional
information provided by the annotation. Each facet can
be regarded as a separate layer of the drawing, such
that the two layers together provide a complete product
definition.

In most current CAD-conversion systems, the separ-
ation into layers is done on the basis of ‘graphics’ vs
‘text’. In the approach described here, however, the
two layers are the image, or geometry layer, which
includes projections of the object, and the language, or
annotation layer, which includes dimensioning and
other functional symbols. Dori and Tombre® divide the
understanding process into three phases: lexical—early
vision, syntactic—intermediate vision and semantic—
high-level vision. The lexical phase is preceded by
scanning, noise removal, enhancing, thresholding and
other preprocessing operations. Lexical analysis
includes recognition of primitives—basic elements
found in most engineering drawing: bars (straight-line
segments with non-zero width), circular arcs (with non-
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Fig. 2. A top-level object-process diagram (OPD) of the proposed
approach for 3D object reconstruction from engineering drawings.
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Fig. 3. The topological and dimensioning analysis process of Fig. 2
(enlarged).

zero width as well), text, and arrowheads.® At the
syntactic phase, the primitives are aggregated into
groups, such as dimension-sets, that obey the rules of
the grammar of dimensioning in engineering
drawings.'” The semantic phase involves recovering for
each 2D view of the object described in the drawing
each one of the two major layers—geometry and
annotation—and verifying that the dimensioning is
proper," i.e. that there are neither missing nor redun-
dant dimension-sets.

The Machine Drawing Understanding System
(MDUS), an experimental system designed to auto-
mate the process of converting mechanical engineering
drawings into CAD format,” is currently used for the
lexical analysis phase.

5. TOPOLOGICAL AND DIMENSIONING
ANALYSIS

Following 2D understanding of engineering draw-
ings, each of the projections is analyzed by means of
geometrical and topological relations. Given an ortho-
graphic view, geometric constraints, which result from
detected dimensions, are extracted.

In Fig. 3, the process “Topological and Dimensional
Analysis” of Fig. 2 is enlarged, exposing three main
processes:  “Constraint  Evaluation”,  “Proper
Dimensioning Check” and “Graph Representation and
Dependencies Matching”. Note that the input and the
output of the blown-up process—Dimensioned 2D view
and 2D directed graph, respectively—are consistent
with those depicted in Fig. 2. This consistency is a basic
feature of the scaling of Object-Process Diagrams."

Mechanical CAD systems can be classified into con-
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ventional and parametric systems. In most conventional
mechanical CAD systems, the geometry determines the
dimension values. The user must accurately define the
geometric positioning of each entity in the drawing, and
changes to the design are made directly in the graphics.
Dimensions should then be modified separately by the
user to match the described geometry. In parametric,
constrained-based systems dimensions define the geo-
metry and are used to specify the position of the
topological entities.” Changing one or more numerical
values of the dimensions in the drawing yield a new
geometry, consistent with the new values of the dimen-
sions. The dimensions are treated as constraints de-
scribing relations among entities. The main use of the
parametric approach is to provide the user with a
flexible CAD system, in which design and modifica-
tions are made simple and intuitive. Approaches to
constraint management in parametric design, which are
discussed briefly below, are classified into two main
types: algebraic and artificial intelligence (Al)-
oriented.

The variational geometry algebraic approach is based
on translating each of the constraints to an algebraic
equation. Hilliard and Braid®” laid down the basic
concepts of variational geometry. Light and Gossard*
presented a procedure for 2D CAD, based on the idea
that dimensions in a mechanical drawing describe the
object’s geometry and topology, and can be treated as
constraints. Lin et al.” utilized variational geometry to
design and modify constraints of 3D objects. The
method handles planar, cylindrical and canonical faces,
and uses the Jacobian matrix to determine the sensi-
tivity matrix.

An artificial intelligence-oriented approach is de-
scribed by Aldefeld® as a combination of geometric
clements and formulae defining constraints. The 2D
geometry is based on three types of primitives: points,
tracks, and line segments. Constraints are categorized
into two types: metric (dimensional) constraints, which
involve midpoint, parallel tangent, etc. Constraints are
translated to equations and tested for degrees of free-
dom. Constraint-propagation rules are constructed
from atomic formulae, and forward inferencing is used
as a control strategy. Extending the work of Aldefeld,*
Verroust et al.” focus on evaluating the main rules in
2D models. The method is based on an expert-system
shell, which contains constraints and points. The
system evaluates rules, produces geometric locations,
and detects inconsistencies. Bruederlin® presents a
method of modeling operations using constraints and
group hierarchy. The system is an interactive 3D geo-
metric modeler, in which an object can be created by a
combination of transformation operations.

5.1. Constraint definition and proper dimensioning
check

The basic primitives comprising a 2D orthographic
view of an engineering drawing are bars, arcs and
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circles. Each dimension and topological relation is
formulated as a constraint which defines the positioning
of each point.”! The variational geometry rule base
defined and used in this work is described in detail in
Ref. 1. Dimensions define geometric constraints, such
as the distance between two points, the distance
between a point and a bar, and an angle between two
bars. Similarly, topological relations involve primarily
connectivity. Tangency is an example of a topological
relation, since it requires that an arc (usually represent-
ing a cylindrical face in 3D) be adjacent to a bar
(usually representing a planar face in 3D). Parallelism
and perpendicularity involve angular measures, and are
therefore considered as metric constraints.

A sample of three rules from the variational ge-
ometry rule base is given in equations (1)-(3).

® Euclidean distance: the distance between two
points P;(xy, y,) and Py(x,, y,) is given by

(xz—x1)2+()’2_Y1)2—D2=0- ey

® Perpendicularity: two bars PP, and P;P, are
perpendicular if the scalar product of their asso-
ciated vectors is zero

(2= x)(xs = X3) + (12— y)(ya—y3)=0. (2)

® Line Parallelism: two bars PP, and P,P, are
parallel if their vector product is zero

(= x)(ya—y3) + (2= y)xs—x3)=0. (3)

These constraints provide the basis of constructing
the Jacobian constraint matrix. For the dimensioning to
be proper, the Jacobian constraint matrix should meet
the following two requirements:

(1) The number of constraints must be equal to
twice the number of vertices in the drawing.

(2) The rank of the Jacobian matrix must be equal
to the number of constraints.

These requirements are valid because each vertex is
represented by a pair of numbers, the x and y coordi-
nates, such that ultimately, if all the constraints are
satisfied, the value of each one of these numbers is
determined unambiguously and without redundant or
contradicting constraints. This remains true even
though some of the constraints may not refer directly to
vertex coordinates, because propagating the constraints
eventually causes the coordinates of each vertex to be
fixed in the plane. If at least one of the requirements is
not fulfilled, the dimensioning is improper, i.e. there is
at least one extra or one missing constraint.

5.2. Graph representation and dependency matching of
2D view constraint-set

Following the constraint definitions and proper
dimensioning check for each 2D orthographic view, the
constraints are combined into a 2D undirected graph.

The constraints extracted from each 2D view repre-
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sent relations among explicit and implicit dimension-
sets.'” An explicit dimension-set is a dimension-set
which appears explicitly in the drawing. An implicit
dimension-set is a measure which is implied from con-
ventions of draftsmanship. For example, if two lines in
the drawing appear to be perpendicular (parallel) to
each other and there is no indication that contradicts
this, then the angle between these two lines is indeed
90° (0°).

The resulting expressions are mostly nonlinear equa-
tions, and represent equalities. The graph represen-
tation of a single constraint expresses the relationships
and connections among the parameters in one corre-
sponding, metric (dimensional) or structural (topologi-
cal) relation. A graph representation of a constraint-set
expresses the relations of parameters among more than
one constraint.

Figure 4 is an enlargement-up of the process “Graph
Representation and Dependency Matching” depicted
as a single ellipse in the OPD of Fig. 3. It describes in
detail the procedures of converting the constraint set
into a minimal undirected graph. The motivation of this
operation is to find the minimal set of relations that
fully represent the 2D view. The minimal graph rep-
resentation provides a compact quantitative and quali-
tative relation mapping of connections among the
parameters.

Detailed terminology of graph theory can be found in
Refs 27 and 28. The terms used in this paper are
described below.

Definition 1: A graph G=(V, E) is a structure which
consists of a set V of nodes (points, vertices) and a set E
of edges (arcs, pointers), such that each edge e is
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Fig. 4. The graph representation and dependencies matching process
of Fig. 3 (enlarged).
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Fig. 5. An example of a bipartite graph.

incident to the elements of an unordered pair of nodes
(u, v), where u and v are not necessarily distinct.

Definition 2: a bipartite graph BG=(V, E) is a graph
in which the set of nodes V consists of two disjoint
subsets B and C such that every member of E has one
element in B and another in C.

Figure 5 shows an example of a bipartite graph,
where B ={a, b, c} represents the set of parameters and
the set C={f,, f,, f3} represents the constraints.

The arcs are represented by E={(a,fi), (a,f3),
(b’fZ)’ (C’fZ)’ (C,f:;)}_

Definition 3: Let BG=(V, E) be a bipartite graph
and B, Cc V. Maximum matching, also known as the
“marriage algorithm”, is a method in which the largest
subset of E (edges) is found in BG, such that no two
edges share a common node in the same set B or C.

Definition 4: A complete matching is a match set M
where the number of matching edges [M] is equal to the
number of nodes in set B and in set C, i.e. |B|=|C|.
Complete matching is achieved by implementing a
network flow algorithm.”

Although the matching process is not unique and can
yield different match sets for the same bipartite graph,
this non-uniqueness does not affect the accuracy of the
solution, because there is no preference for a specific
match set.

It is important to understand the relationship among
parameters in the explicit and implicit dimensions
represented via the constraint-set, as described by
Serrano.” The advantages of using graphs for repre-
senting the constraint set are twofold. Graphs allow
both qualitative and quantitative operations to be car-
ried out and enable a large number of algorithms from
graph theory to be applied for a variety of purposes.

As described in Fig. 4, graph representation and
dependency matching for the 2D view constraint set
consists of four steps:

(1) representing the constraint set by a complete
graph;

(2) representing the constraint set as a bipartite
graph;

(3) finding a maximum matching for the bipartite
graph; and

(4) transforming the complete graph into a mini-
mal graph using dependencies from the maxi-
mum matching found in step 3.

5.3. A simple example

The minimal graph representation process can be
demonstrated by a simple example concerning the
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position of a point constrained to lie on a line and a
circle, represented by the following two constraints:

0 (4)
().

A distinction is made between two types of parameters:
“known” and “unknown”. The known parameters are
explicit dimensions detected in the 2D view, while the
unknowns are point locations. For the constraint set of
equation (4), the set of known parameters is {D,, D,},
while the unknowns are {x, y}. In this example there are
two solutions to the pair {x, y}, but this is irrelevant,
because the underlying geometry here does not repre-
sent what is normally found in engineering drawings.
The four steps of the process follow:

Step 1: A representation of the constraints as a full
graph is shown in Fig. 7. In Fig. 6, each constraint
yields a separate partial graph, where each node repre-
sents a parameter, and an arc represents the existence
of the corresponding constraint (f; or f,) between the
parameters. The arcs are labeled according to the
constraint.

In Fig. 7, the two graphs are combined into a com-
plete graph, where the parameters x and y are common
and therefore appear only once.

Step 2: The bipartite graph, shown in Fig. 8, is
obtained from the constraint set in equation (4) as
follows. Only the “unknown” parameters are involved
in the bipartite graph representation. The two sets
B={x,y} and C={f), f,}, and the set of edges E=
{(x.f), 00, ), (x,£5), (v,f>)} are defined. These four
edges are indicated in Fig. 8 by solid and dashed lines.

Step 3: Applying the maximum matching process
yields the match set M={(x, f,), (v, f>)}, which is indi-
cated by the solid lines in Fig. 8. The dashed lines
represent the relations which were not chosen in the
matching process.

Step 4: Using the match set, the full undirected graph
is transformed into a minimal undirected graph. This
transformation provides a graph with the minimal set of
edges needed to represent the connections and rela-
tions among the parameters. This is done by applying
the following rules: for each pair (v, f) in the match set,
the full undirected graph is modified such that all arcs
labeled f and incident on v are kept. For example, x
was matched with f;; therefore only arcs that are
labeled f; and are incident on x are kept. The resulting
minimal undirected graph is shown in Fig. 9.

(D) (D)

Fig. 6. Two partial graphs for the constraints f, (left) and f, (right).

*+y’~Di=0

x+y—D2=:0
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Fig. 7. A complete graph for f; and f,.

6. 3D RECONSTRUCTION

Having obtained the 2D minimal undirected graph
for each 2D orthographic view, the 3D object is recon-
structed. The 3D reconstruction process, depicted
within the blow-up frame in Fig. 10, is an up-scaling of
the 3D reconstruction process shown in Fig. 2. The
detail within the blow-up frame indicates that the 3D
reconstruction process consists of three major steps:

(1) composite network generation;
(2) 3D dimensioning labeling; and
(3) network-to-object conversion.

6.1. Composite network generation

The process of composite network generation uses
the set of separate 2D minimal undirected graphs
constructed in the previous stage. These graphs are
analyzed for matching and merging conditions. A sche-
matic illustration is shown in Figs 11 and 12. Figure 11
illustrates the starting point, in which each 2D view has
an independent minimal graph representation. Figure
12 illustrates the composite network generated by
adding new edges (the dashed lines) to connect the 2D
view graphs.

The composite network-generation process consists
of two sub-processes:

(1) Initial matching

Matching the first 3D vertex is based on examining
candidate vertices in each one of the 2D representation
graphs to be matched as belonging to the same 3D
point. This can be done, for example, by matching the
extreme three points, one in each view, where
“extreme” is in the sense that each point is the closest
to the origin of the 2D coordinate system dividing the
plane into quadrants, such that each view is in a
different quadrant.

~
~

yo';____‘oﬁ

Fig. 8. Bipartite graph and maximum matching.

.
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Fig. 9. Constraint set minimal graph.

(2) Complete matching

The initial 3D vertex serves as a starting point to the
completion of the matching process. Each 3D link
represents both the connecting related parameters and
the nature of the link (parallelism, dimension, etc.)

6.2. 3D dimensioning labeling and network-to-object
conversion

In the 2D constraint set graphs, names of parameters
and constraint labels are unique. After generating a
composite network, the graph has to be re-labeled to
maintain the consistency of the relations among the
constraints and the parameters.

The network-to-object conversion is a translation of
the dimensional and topological relations, represented
by the composite network graph, into the geometrical
3D world. The exact procedure is a topic for further
research. However, at this point it is already clear that
since the composite network represents the 3D rela-
tionships among vertices and higher-level geometric
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Fig. 10. 3D reconstruction process (enlarged).
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Fig. 11. 2D minimal graphs for each orthographic view.

entities, the final 3D coordinates of the vertices are
gradually solved for. The traversal will be guided by
topological considerations, such as moving along an
edge from one vertex to the other or finding closed
loops around faces.

7. A COMPREHENSIVE EXAMPLE

The following example illustrates the process of con-
structing a minimal undirected graph from two 2D
dimensioned views of an engineering drawing. A trian-
gular prism is described in Fig. 13 by two views: front
view (F) and side view (8S).

7.1. Constraint evaluation and proper dimensioning
check

The following parameters are used for the points in
the two 2D views of Fig. 13. For the side view there are
the four points P,(vy, z;), Pa(ys. 22), Pi(yi, z3), and
P.(v,, z,), and for the front view, Pi(x;, ¥)), Pi(xs, y2),
and Pi(xy, ys).

Two rules from the variational geometry rule base
described in Section 5.1 are used: Rule No. 1—
Euclidean distance between two points, and Rule No.

Fig. 12. Composite network of orthographic views.
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Fig. 13. Front view (F) and side view (S) of an engineering drawing of
a triangular prism.

2—Perpendicularity. In addition, to prevent solid body
translation,a selected point, called the anchor point, is
fixed as the origin (0,0). All the points are defined
relative to this anchor point. Likewise, to fix the orien-
tation (i.e. to prevent solid body rotation), a particular
bar®® is chosen to be horizontal, i.e. parallel to the
horizontal axis. Thus, for the front view of Fig. 13 the
following six constraints are formulated:

Rule
No. Source Constraint
1 b fio G=x))"+ (=) (5)
—-b=0
1 a 2% (xz—x1)2+()’3_Y1)2 (6)
—a’=0
2 P]PZ_LP1P3 f3: (x,—xz)(x3—x1)+(y]+y2) (7)
(y3—y1)=0
x anchor  fi: x;=d=0 (8)
yanchor  fsiy;=e=0 )
orientation fi: y,—y,;=0. (10)

From equations (5)—(10) a 6 X 6 Jacobian matrix was
obtained. The rank of the matrix was computed using
the Matlab package. The dimensioning in this case was
found to be proper, because, as required, the number
of constraints is twice the number of points, i.e. 6, and
the rank of the Jacobian matrix is also 6.

For the side view, eight other constraints are simi-
larly formulated as follows:

Rule
No. Source Constraint
1 d fii =y )+ (22— z,) (11)
—-d*=0
1 b fo: o=y’ +(z:—2) (12)
~-b*=0
1 d f3: a=y3)’ + (za— z5)° (13)
—-d*=0
1 b fa (}’4“)’2)2'*'(24“2'2)2 (14)
—p2=0
1 PP, LP Py fii(yi~y2)(y3—y1) (15)
+H(zi—y)+(z—2)
X (z3—z;)=0
x anchor fooy1=e=0 (16)
y anchor firzy=a=0 (17)
orientation  fg z,—z;=0. (18)

As before, the 8 X 8 Jacobian matrix resulting from
equations (11)-(18) was computed. The rank of this
matrix was found to be 8, indicating proper dimension-
ing and constraint definition of the side view as well.

7.2. Graph representation and dependencies matching

Figure 14 describes the full undirected graph con-
structed from the set of constraints in equations (5)-
(10). The graph was constructed by the method de-

Fig. 14. Full undirected graph for the front view constraint set of Fig. 13.



62 DOV DORI and MIRI WEISS: 3D ORTHOGRAPHIC VIEWS

Fig. 15. Bipartite graph for the front view.

scribed in Section 6.2. For example, the edge between
x, and y; is labeled f;, because the parameters are
connected through the formulation of constraint f,
[equation (7)].

Another example is the edge connecting x; and y,,
which is labeled f; and f;, indicating that these param-
eters are connected by the two constraints, f; [equation

Fig. 16. Minimal graph for the front view.

Fig. 17. Bipartite graph for the side view.

(5)] and f; [equation (7)]. The nodes d and e stem from
the constraints (8) and (9), corresponding to the x and y
anchors, respectively.

Figure 15 is a bipartite graph, which was also
obtained from the set of constraints in equations
(5)-(10). The match set M={(x,fs), (v1,£5), (x2,f1),
2 fs), (x3.f2), (vs,f3)}, found from the maximum
matching procedure, is indicated by the thick lines
connecting the parameters (x,, ..., y;) and the con-
straints (f, . . ., fi), as explained in Section 5.2.

Figure 16 represents the minimal undirected graph
for the front view, obtained from the undirected graph
of Fig. 14 and the corresponding bipartite graph of
Fig. 15.

Figures 17 and 18 describe the corresponding bipar-
tite and minimal graphs for the side view of Fig. 13.

Fig. 18. Minimal graph for the side view.
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8. SUMMARY AND FUTURE WORK

The approach to solving the problem of 3D object
reconstruction from 2D views proposed in this work
combines a variational geometry rule base and a set of
graph-theoretic tools. These two elements are amen-
able to automation, and the complex procedure de-
scribed in this work can therefore potentially serve as a
means for reliable and accurate 3D reconstruction from
engineering drawings.

Problems that remain to be solved for a complete
implementation of the methodology include:

(1) obtaining the composite network;

(2) translating the composite network to a 3D
object;

(3) devising an automated process for the (cur-
rently manual) input of constraint infor-
mation; and

(4) investigating the complexity of the process.

Automating the process of constraint information
input can be guided by a set of rules of the type “For
each longitudinal explicit dimension in the 2D view
insert a constraint relating to the distance between two
points” for explicit dimensions. An example of a con-
straint stemming from an implicit dimension is “If two
bars are about perpendicular to each other and there is
no angular dimension-set indicating the angle between
these two bars, then insert a perpendicularity con-
straint”. A set of heuristics will probably have to be
devised to reduce the complexity of the graph oper-
ations.
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