
Pattern Analysis & Applications (1999)2:10–21
 1999 Springer-Verlag London Limited

From Raster to Vectors: Extracting Visual
Information from Line Drawings*

Liu Wenyin1,2 and Dov Dori3
1Microsoft Research, Beijing, PR China; 2Department of Computer Science and Technology, Tsinghua University,
Beijing, PR China; 3Faculty of Industrial Engineering and Management, Technion – Israel Institute of Technology,
Haifa, Israel

Abstract: Vectorisation of raster line images is a relatively mature subject in the document analysis and recognition field, but it is far
from being perfect as yet. We survey the methods and algorithms developed to-date for the vectorisation of document images, and classify
them into six categories: Hough transform-based, thinning-based, contour-based, run-graph-based, mesh-pattern-based, and sparse-pixel-
based. The purpose of the survey is to provide researchers with a comprehensive overview of this technique, to enable a judicious decision
while selecting a vectorisation algorithm for a system under development or a newly developed vectorisation algorithm.

Keywords: Document analysis and recognition; Line drawings; Polygonalisation; Raster-to-vector; Thinning; Vectorisation

1. INTRODUCTION

Vectorisation, also known as raster to vector conversion, is
a process that finds the vectors – straight line segments –
from the raster images. Vectorisation is a widely used process
in the area of Document Analysis and Recognition (DAR)
as a preprocessing step for high-level object recognition,
such as Optical Character Recognition (OCR) and graphic
objects recognition. Basic vectorisation concerns grouping
the pixels in the raster image into raw wires that are
described by several attributes, such as characteristic points
and line width. Advanced vectorisation includes line fitting
and extending, which yields fine wires. We refer to crude
vectorisation as the basic vectorisation process that takes a
raster (binary) image as input and yields coarse wire frag-
ments, which may be bars (non-zero width line segments)
and polylines (chains of bars linked end-to-end).

Many crude vectorisation methods have been developed
and implemented since image processing techniques were
introduced more than 30 years ago. These methods can be
roughly divided into six classes: Hough Transform (HT)-
based methods; thinning-based methods; contour-based

Received: 10 November 1998
Received in revised form: 7 January 1999
Accepted: 7 January 1999
*Presented at SSPR ’98

methods; run-graph-based methods; mesh pattern-based
methods; and sparse-pixel-based methods. With the excep-
tion of HT-based methods, a typical vectorisation process
consists of the following basic scheme:

1. Medial axis points sampling, or medial axis representation
acquisition. This is the kernel processing for information
reduction, after which only the important points that
represent the medial axis are determined.

2. Line tracking, which follows (tracks) the medial axis
points found in the first stage to yield a chain of points
for each vector.

3. Line segment approximation or polygonalisation, which
removes non-critical points from the point chains found
in the second stage, and links the remaining critical
points into bars and polylines.

The remaining critical points are finally used to represent
the vectors extracted from the raster image. The main
difference among the above-mentioned classes of vectoris-
ation methods lies in the first two sub-processes. Several
polygonalisation algorithms can be employed in the third
subprocess.

In this paper, we survey the methods in each of the
categories developed to-date for the crude vectorisation of
document images. Crude vectorisation is a relatively mature
subject in the DAR field, but it can still be improved
significantly. The purpose of the survey is to provide



11Extracting Visual Information from Line Drawings

researchers with a comprehensive overview of this technique
as an aid in selecting the most appropriate vectorisation
algorithm to suit the needs of the system they are
developing, or help them develop a vectorisation algorithms
that better suit their system’s particular needs.

2. HOUGH TRANSFORM-BASED
METHODS

Dori [1] discusses the application of the Hough Transform
(HT) [2] in the vectorisation of straight line images by
transforming spatially extended patterns in binary image
data into spatially compact features in a parameter space.
The transformation converts a difficult global detection prob-
lem in the image space into a more easily solved local peak
detection problem in the parameter space. One way in
which the HT can be used to detect straight lines is to
parameterise it according to its slope and intercept. Straight
lines are defined in Eq. (1):

y = mx + c (1)

Every line in the (x,y) plane corresponds to a point in
the (m,c) plane. Every point on the (x,y) plane can have
an infinite number of possible lines that pass through it.
The gradients and intercepts of these lines form a line on
the (m,c) plane described by Eq. (2):

c = 2xm + y (2)

The (m,c) plane is divided into rectangular ‘bins’, which
accumulate, for each black pixel in the (x,y) plane, all the
pixels lying along the line in Eq. (2). When the line of
Eq. (2) is drawn for each black pixel, the cells through
which it passes are incremented.

After accounting for all the pixels in the image space,
lines are detected as peaks in the transform space. Taking
into account noise, each peak that is greater than a prede-
fined threshold is used to form a line defined in Eq. (1). In
practice, this assumed line might be a combination of several
collinear line segments (bars). Hence, the pixels on the
original image along the assumed line are followed so that
the end points of these segments are found. The line width
is also determined during the line tracking by examining
the width at each pixel.

For straight-line detection, the HT visits each pixel of
the image once. Therefore, its time complexity is linear
with the total pixel number, which is the product of the
image width and height. Since each side of the image is
linear to the image resolution, we use the image resolution
as the unit in analysing the time complexity of vectorisation
algorithms. Hence, the time complexity of the HT-based
vectorisation method is quadratic to the image resolution.

Since peaks are expected to be formed in the (m,c) plane
for points whose m and c belong to broken or noisy lines
in the original image, the HT can be used to detect lines
in noisy images. However, since the gradients and intercepts
are sampled sparsely, they may not be as precise as the
original lines. Hence, the quality of lines detected is far less

precise for slanted lines. This can be seen from Fig. 11(b),
which is produced by an implementation of the HT-based
vectorisation method by Dori [1]. Moreover, the HT-based
methods can yield bars only, and cannot generate polylines.

3. THINNING BASED METHODS

Tamura [3], Smith [4] and Lam et al [5] provide comprehen-
sive surveys of thinning algorithms. Thinning-based methods
are commonly used, to the extent that most of the earlier
vectorisation systems (e.g., Fahn et al [6], Kasturi et al [7]
and Nagasamy and Langrana [8]), and some later revised
methods (e.g. Hori and Tanigawa [9]), apply them as a first
step. All of these methods employ a thinning procedure in
the subprocess of medial axis points sampling to obtain the
one-pixel wide skeletal pixels of the black pixel region
before the line tracking subprocess takes place.

Thinning, which may also be referred to as skeletonis-
ation, skeletonising, core-line detection, medial axis trans-
formation or symmetric axis transformation in the literature,
is a process that applies morphological operations [10] – on
the input raster image and outputs one-pixel wide skeletons
of black pixel areas. The skeleton of a black area is the set
of pixels whose amount is the smallest, but whose topological
structure is identical to the original image shape. Hence, it
is much easier to operate and analyse than the original
image. It is defined by Montanari [11] as the locus of the
intersections of the wavefronts that propagate from inside
the opposite edges of the area. Pfaltz and Rosenfeld [12]
define that a skeleton is formed from the centres of maximal
disks placed within the area. Davies and Plummer [13] add
sufficient additional points to the skeleton defined by Pfaltz
and Rosenfeld [12] such that it is connected. Based on the
above definitions of skeleton, the thinning algorithms are of
three groups: iterative boundary erosion (like the wavefront
propagation) [14,15]; distance transform [16,17]; and
adequate skeleton [13].

Iterative thinning methods employ the idea of iteratively
shrinking the contour of (or removing the outside layer of
pixels from) the line object, like a wavefront propagated
from outside towards the inside of the object, until only
(the pixels on) the skeleton (medial axis) remains. These
methods, except for that of Montanari [11], which works
on vector contours of the line objects, are surprisingly similar
to each other, which work on pixels, as formally described
by Naccache and Shinghal [14,15].

Following the skeleton definition, Montanari [11] con-
siders the vector form outline (contour) of the object shape
as a wavefront. The wavefront is then iteratively propagated
towards the inside of the line region, with the superposition
of waves not permitted. Points of the intersection of wavef-
ronts are considered as the points of the skeleton. The pixel
level outline is found by an edge detection operation, which
is a very common and mature operation in computer vision
[10,18]. The outline pixels are then tracked to a pixel chain,
which is further vectorised by a polygonalisation procedure
(which will be discussed in Section 8). Hence, the main
computation is edge detection preprocessing, whose time



12 L. Wenyin and D. Dori

complexity is linear to the total number of pixels in the
image, and therefore quadric to the image resolution. The
polygonalisation preprocessing time is negligible compared
to the edge detection. So is the wavefront propagation,
which is linear to the line width (which is linear to the
image resolution) and the boundary points (which is also
linear to the image resolution, since the perimeter of a
planar region is linear to the radius of the region). Therefore,
the total time complexity is quadric.

The pixel level iterative thinning is like iterative erosion
of the line object boundary. As basically proposed by Hild-
itch [19], the kernel procedure is moving a 3 × 3 window
over the image and applying a set of rules to mark the
centre of the window. On completion of each scan, all
marked points are deleted. The scan is repeated until no
more points can be removed. Coding the points in the 3 × 3
window is shown in Fig. 1. The marking rules are outlined
by Naccache and Shinghal [14] as follows. P is marked for
deletion if all the following rules are satisfied:

I P must have at least 1 white 4-connected [20] neighbours
(e.g. P2i, i = 0..3), i.e. P is an edge point.

I P must have at least 2 black 8-connected [20] neighbours
(e.g. Pi, i = 0..7), i.e. P must not be an end.

I At least 1 of the black 8-connected neighbours of P must
be unmarked.

I P must not be a break point (whose deletion disconnects
two parts of a line).

I If P2 is marked, setting P2 white must not make P a
break point.

I If P4 is marked, setting P4 white must not make P a
break point.

The main problem of the pixel level iterative thinning
algorithms is the time complexity, which is O(wN), where
w is the line width and N is the total number of pixels in
the image. Since the line width is also linear to the image
resolution, its time complexity is cubic to the image resol-
ution. Moreover, they are prone to shape distortion at
junctions like ‘X’ and ‘T’ [15], shown in Fig. 2. None of
these algorithms has been proven to work for every case in
terms of the accuracy of their results. Although the vector
level iterative algorithm of Montanari [11] is faster, the
shape distortion at junctions is a shortcoming, due to its
iterative nature. Similar methods of fine tuning the iterative
boundary erosion technique include justifying the marking
rules [3] and varying the window size. Deutsch [21], for
example, uses non-square windows, while O’Gorman [22]
generalises the method to k 3 k sized windows. However,
these modifications obtain only a small improvement in

Fig. 1. A pixel (P) and its 3 × 3 neighbourhood.

Fig. 2. Thinning distortions at junctions.

terms of speed and accuracy. For more details of iterative
thinning algorithms, [3,4,5] provide thorough surveys.

Pfaltz and Rosenfeld [12] define the skeleton in a more
formal way, on the basis of which the distance transform
[16,23] is introduced to the thinning procedure. Rosenfeld
and Pfaltz [16,23] define the distance transform of a binary
image as replacing each pixel by a number indicating the
minimum distance from that pixel to a white point. The
distance between two points is defined by the number of
pixels in the shortest 4-connected chain between the points.
This transform is calculated by evaluating a function sequen-
tially in a raster scan over the image, followed by a second
function in a reverse scan.

Once the distance function has been calculated, a local
maximum operation is used to find the skeleton. It has been
shown to be the smallest set of points needed to reconstruct
the image exactly. The distance transform and the skeleton
are illustrated in Fig. 3. Haralick and Shapiro [10] also
present a detailed discussion of the implementation of the
distance transform operator, including recursive and non-
recursive implementations.

The main problem with this algorithm, as shown in Fig.
3(c), is that the skeleton may not be connected, especially
at junctions. However, the time required is of the order of
the number of pixels in the image, i.e. the speed is only
quadric to the image resolution. This is much faster than the
iterative algorithms, which have a cubic time complexity.

Fig. 3. Illustration of distance transform. (a) Image, (b) distance
transform, (c) skeleton.



13Extracting Visual Information from Line Drawings

Similar to the distance transform [16, 23] for a binary
image, Peleg and Rosenfeld [17] define a Min-Max Medial
Axis Transform (MMMAT) for grey-scale images. The skel-
eton’s connectivity is still not guaranteed, though the time
complexity increases to the level of iterative methods. A
different but faster algorithm for detecting lines and regions
from grey level images was developed by Watson et al [24].
They use a Gausian filter to blur a grey-scale image before
the lines are tracked along the peaks, which are supposed
to be the medial axis points of the lines. Although it can
distinguish regions from lines, the filter width is difficult to
determine by making a trade-off between lines and regions.
Therefore, it is difficult to use in the vectorisation of
engineering drawings. Moreover, although it is linear to the
number of pixels if a fixed filter width is used, it is also
cubic to the image resolution if the filter width scales as
the image resolution.

Combining the skeleton points obtained by Rosenfeld and
Pfaltz [16] with those produced by a simple conventional
iterative thinning algorithm, Davies and Plummer [13] define
an ‘adequate skeleton’, and develop a composite thinning
algorithm. The combination may result in skeletons with a
(maximum) 2 pixel width. It is then thinned to a one pixel
wide skeleton. The algorithm obtains more accurate skel-
etons than conventional iterative thinning algorithms, but
more time is needed for the additional processing.

Generally, the objective of thinning is to reduce the data
volume, such that only the topological shape of the image
remains, which is size- and orientation-invariant. The result
usually requires further processing. Most thinning algorithms
are capable of maintaining connectivity. However, the main
disadvantages are high time complexities, loss of shape infor-
mation (such as line width), distortions at junctions, and
false and spurious branches. Although they may be used in
the vectorisation of line drawings, their main application is
in the domain of OCR, in which the image size is usually
small and the line width is not critical.

Performance evaluations of thinning algorithms have been
carried out by Lee et al [25], Lam and Suen [26], Jaisimha
et al [27] and Cordella and Marcelli [28]. Different algor-
ithms may be suitable for different applications (e.g. OCR
or line detection). For example, Lee et al [25] judge the
algorithm of Tamura [3] as featuring good speed, fair con-
nectivity and poor quality of skeleton; the algorithm of
Naccache and Shinghal [15] is characterised as having good
speed, good connectivity, and also a good quality of skeleton.
However, they examine these thinning algorithms only from
the viewpoint of OCR. Developers who wish to use these
thinning-based vectorisation algorithms may refer to the
above references for detailed comparisons of the algorithms.

The skeletons produced by the thinning procedure are
still in bit-mapped form, and need to be vectorised for
further processing. The one-pixel wide skeletal pixels are
followed and linked to a chain by a line tracking subprocess.
Polygonalisation can then be applied to convert the pixel
chain to a polyline (or a single bar – a ‘monoline’), which
contains only the critical points. The polygonalisation
methods are discussed in detail in Section 8.

4. CONTOUR-BASED METHODS

Aiming at lowering down the computational burden of
thinning, another group of vectorisation algorithms tries to
reduce the data volume before sampling the medial axis
points. The main idea is finding the shape – the edges (or
contour) of the line object first, and then calculating the
middle points of the pair of points on two opposite parallel
edges. This group of vectorisation algorithms sample and
track (follow) the medial axis points simultaneously. This
is different from thinning-based algorithms, which do line
tracking after all the medial axis (skeleton) points have
been sampled. The main computationally intensive operation
in these methods is edge detection and polygonalisation.
The time complexity of edge detection is linear to the pixel
volume (i.e. quadric to the image resolution). Polygonalis-
ation is only linear to the pixels on the contour, as discussed
in Section 8. Hence, this group of vectorisation algorithms
has a quadric complexity, and is much faster than thinning-
based algorithms. Moreover, the line width is also much
easier to obtain, which is very important for higher level
drawing interpretation. Edge detection is a common and
mature operation in computer vision. Some edge detectors
can be found in the books of Haralick and Shapiro [10]
and Nalwa [18].

Assuming that the edges are found and polygonalised, the
medial axis points of two approximately parallel edges are
defined by Jimenez and Navalon [29] to be the midpoints
of the perpendiculars projected from one side to the other,
as shown in Figs 4(a) and 4(b). Starting with a ‘well
behaved’ edge (which is a vector), a linear search finds the
nearest edge on the other side of the object, and several
perpendiculars are projected from one to the other. Sub-
sequent edges are easier to find simply by following the edge
until a junction point is found.

The problem with all the algorithms of this type is how
to deal with junctions. There are two main problems associa-
ted with junctions. The first is shown in Fig. 4(c), in which
an intersection at a small angle forms a merging junction,
which is most likely to be missed during tracking. In the
second case, shown in Fig. 4(d), a cross intersection is
encountered. Joining up the lines meeting here is problem-
atic. It is important that the algorithm be robust and capable
of dealing with all line shapes without misjudging a junction
and producing an incorrect skeleton. Hence, it is inappropri-
ate for use in the vectorisation of curved and multi-cross-
ing lines.

Based on the same idea, Shapiro et al [30] start with a
non-polygonalised, pixel-form edge. The midpoint of two
pixels on opposite edges of the object is taken as being a
point on the skeleton. The edges are followed such that
the width is minimised, thus preventing scanning of the
inside of a bend from getting out of synchronisation with
the outside. The problem at junctions remains unsolved,
since the object is assumed to have a simple backbone with
branches, but these branches are not permitted to have sub-
branches. This makes the algorithm unsuitable for most
applications, but it does provide some useful ideas for a
more general solution.



14 L. Wenyin and D. Dori

Fig. 4. Illustration of parallel edge pair based vectorisation. (a) Midpoint of parallel edges, (b) midpoint of approximate parallel edges, (c)
missed junction, (d) confused junction.

5. RUN GRAPH-BASED METHODS

Extending the ideas of Di Zenzo and Morelli [31] and Boatto
et al [32], Monagan and Roosli [33] more formally define
the run graph as a semi-vector representation of a raster
image before line detection and other segmentation. It is
sufficient for structural representation of the line-like images,
and efficient for line extraction, information preserving and
easier to operate.

Several cases of run graph representation for raster images
are illustrated in Fig. 5. A run has a direction, which can
be either horizontal or vertical. It is a maximal sequence of
black pixels in its direction. Hence, a run can be defined
using the quadruplet

R = {d, cd9, bd, ed}, bd # ed

where d is referred to as the direction of the run, which can
be either 0 for horizontal or 1 for vertical, cd9 is referred to
as the orthogonal coordinate, which is the coordinate of the
run in the direction orthogonal to the run direction, i.e. cd9

is the row number if d is horizontal, or the column number
if d is vertical, bd is referred to as the begin (directional)
coordinate, which is the coordinate of the first pixel of the
run in the run direction, and ed is referred to as the end
(directional) coordinate, which is the coordinate of the last
pixel of the run in the run direction. A vertical run R1
and a horizontal run R2 are illustrated in Fig. 5. A run can
also be expressed by two endpoints, in which case, the
direction is inferred from the two points’ coordinates. If
their x coordinates are equal, the direction is vertical, and
if their y coordinates are equal, the direction is horizontal.

A subrun is a part of a run. Runs A and B are adjacent
if they have the same direction, the difference of their
orthogonal coordinates is 1, and the difference of their

Fig. 5. Illustrations of run graph representation of a raster image.

maximal begin coordinates and minimal end coordinates is
less than or equal to 1. If A and B are adjacent and A’s
orthogonal coordinate is smaller than that of B, A is called
predecessor of B, and B is called successor of A. A run is
regular if it has only one predecessor and only one successor,
otherwise, it is singular. Two runs are conjugate if they are
orthogonal and overlap one and only one pixel, i.e. they
cross. A vertical run is a short run if it is regular and not
longer than all its conjugates. A horizontal run is a short
run if it is regular and shorter than all its conjugates.

An edge area consists of a maximal sequence of adjacent
short runs in the same direction. An extreme area consists
of only one run that has no adjacent run on one side. A
junction area consists of a maximal sequence of adjacent
vertical runs/subruns of pixels belonging neither to vertical
nor to horizontal short runs. Monagan and Roosli [33]
introduce the concept of a touching point, which does not
actually cover any pixel point in the image. A touching point
is formed between two adjacent runs if they do not overlap
in their direction, or between two orthogonal runs if they
do not overlap but touch each other end-to-end, as shown
in Fig. 5. However, this definition is contradictory to the
definition of edge area, since two touching and adjacent
runs are parts of an edge area. Removing this definition, a
run graph RG can be formally defined as follows:

RG = kV, El

where V is a set of nodes (vertices), which are either
junction areas or extreme areas, and E is a set of edges,
which are edge areas that link nodes.

According to Boatto et al [32], the procedure of con-
structing a run graph of an image is as follows. The first
step is to build both horizontal and vertical simple run
graphs, which consist of only horizontal runs and vertical



15Extracting Visual Information from Line Drawings

runs, respectively. Secondly, edges are built as sets of adjac-
ent regular short runs. The remaining pieces of the image,
encoded as lists of vertical runs and subruns, are the node
areas.

The line extraction procedure takes as input such a run
graph. The shape of each node is then refined by a heuristic
procedure (run splitting) that attempts to minimise the area
of the node and maximise the lengths of the connected
edges. The midpoints of the short runs in the edge areas
are taken as the skeleton points, which further undergo
polygonalisation to produce the final polylines (or bars).

While the line extraction is made efficient due to working
on the semi-vector run graph representation, the prepro-
cessing (i.e. the run graph construction) also takes time for
visiting each black pixel on the image at least once. This
implies that the complexity of the run graph-based vectoris-
ation is quadric to the image resolution. Disadvantages of
the method also include inaccurate intersection points due
to coarse locations of junction areas, false (undesirable)
junction areas resulting from run direction changes, or at
noise points on uneven edges. Hence, this method, too, is
not appropriate for curved line vectorisation.

6. MESH PATTERN-BASED METHODS

Mesh patterns were first introduced by Lin et al [34] to
detect characteristic patterns in diagrams, e.g. logic connec-
tion diagrams. A connection diagram understanding system
is then developed based on this method. The basic idea is
to divide the entire image using a certain mesh, and to
detect characteristic patterns by only checking the distri-
bution of the black pixels on the border of each unit of
the mesh. A control map for the image is then prepared
using these patterns. Finally, the extraction of long straight-
line segments is performed by analysing the control map.
Figure 6 shows the principle of the mesh pattern-based line
detection method. In Fig. 6(a), the image is divided into
square meshes, which are defined by an equal proper mesh
size, n. Each unit mesh is analysed according to the pixels
on the one-pixel wide border only. It is then labelled
according to its characteristic pattern, identified in compari-
son to a known one in the pattern database. The image is
then represented by a control map, in which each unit

Fig. 6. Illustration of mesh pattern-based line extraction method.
(a) Image and meshes, (b) mesh pattern labels and the control map
of the two central meshes of the image, (c) lines extracted by
analysing the control map.

mesh in the original image is replaced with its characteristic
pattern label.

In Fig. 6(b), the central part of the image in Fig. 6(a) is
represented by a control map consisting of two meshes,
whose labels are ‘K’ and ‘I’, respectively. The lines are
recovered and tracked from mesh-to-mesh in the control
map by analysing the characteristic patterns of the meshes,
as shown in Fig. 6(c). In their characteristic pattern datab-
ase, Lin et al [34] defined and labelled 51 known character-
istic patterns. The other unknown complicated patterns are
labelled with question marks. Such areas are further pro-
cessed by a more complex detailed procedure during the
control map analysis. This procedure scans every pixel in
these areas, and every black pixel is labelled as being a line
pixel or a feature point.

Vaxivere and Tombre [35,36] extended the mesh pattern-
based method for mechanical engineering drawings analysis
and recognition. They use dynamic meshes. Complicated
(question-mark-labelled) meshes are further split into several
smaller but known mesh patterns, whose shape may be non-
square. Their vectorisation result is a data structure describ-
ing the image as a collection of segments of different types
(e.g. thick line, thin line and contour of black blob) and
junctions between these segments. The method may obtain
good performance when applied to sparse, straight and long
lines. The mesh pattern-based line detection methods are
fast due to their sparse pixel access. Since only the pixels
on the mesh border are visited, their time complexity is
linear to one side of the image, i.e. linear to the image
resolution. The access ratio, which is the ratio of the number
of accessed pixels to the total number pixels in the image,
is about 2/n, if all meshes are labelled with known labels.
However, if no extra memory is used for the borders of the
neighbour meshes, each pixel accessed may be accessed
twice, since it is on the border of two neighbouring meshes.
As claimed by Lin et al [34], the access ratio for n = 16
pixels is about 2/15 to 3/15. The access time increases as
the number of question-mark-labelled meshes increases. Lin
et al [34] also claim that an optimum mesh size is just a
little larger than the maximum line width in the image, in
which case, the processing time is about 55% of the pro-
cessing time of the complete application of the detailed
processing procedure to the entire image.

However, the mesh size is hard to control. A big mesh
size introduces more question-mark-labelled meshes, which
requires much more processing time. A small mesh size
increases the access ratio, and may also make the line
extraction difficult. Moreover, it is not suitable for the
detection of more complex line patterns, such as arcs and
discontinuous (e.g. dashed or dash-dotted) lines. As claimed
by Lin et al [34], the proper mesh size, n, should be larger
than the maximum width of the line segments, but smaller
than the minimum interspace between two line segments
on the image. In this case, in the areas where only long,
straight line segments exist, each side of a unit mesh border
mostly intersects one line segment of the image. Moreover,
n should be smaller than the smallest (shortest) line segment
of the image, so that the background area judgment can be



16 L. Wenyin and D. Dori

simply performed on the control map by detecting the
characteristic patterns labelled with blank labels. This
excludes the dot segments, whose lengths can be as small
as their widths, or even shorter. Dot segments may be
missed during line tracking. The nature of investigating only
the borders of meshes may link lines with gaps that are
shorter than the mesh size. This may be a big advantage in
some cases, but a big disadvantage in others, since it is
desirable to fill the gaps of a broken line due to noise,
while gaps of dashed lines should not be eliminated. In noisy
drawings, this may turn out to be a non-trivial challenge.

7. SPARSE PIXEL-BASED METHODS

Orthogonal Zig-Zag (OZZ) is the first in a new family of
vectorisation algorithms, developed by Dori et al [1,37,38].
Like mesh sampling [34–36], OZZ samples the image spar-
sely. The basic idea of OZZ is to track the course of a one-
pixel wide ‘beam of light’, which turns orthogonally each
time it hits the edge of the area covered by the black
pixels, such as a bar area. The midpoint of each run, which
is the intersection of the light beam and the area within
the area, is recorded, as shown in Fig. 7. If a run is longer
than a predefined threshold, e.g. 30 pixels [37], the run
stops there, an orthogonal run is made and its midpoint is
recorded. This may happen when tracking along a nearly
horizontal or vertical area. A horizontal case is shown in
Fig. 7.

The details of the OZZ vectorisation algorithm are as
follows. A horizontal screen line, which moves down n (e.g.
n = 10) pixels each time, goes from left to right of the
image. When it encounters a black pixel, it enters in the
area and an OZZ procedure begins. The screening continues
until a white pixel is encountered (i.e. the light beam hits
the edge of the area) or the travelling length within the
black area (which is referred to as a run) exceeds a prede-
fined threshold. If the edge of the area is hit, the midpoint
of the run is recorded, the screening trajectory turns orthog-
onally within the black area, and the OZZ procedure con-
tinues, as shown in the slant case of Fig. 7. If the run
exceeds a predefined threshold, the screening stops, and two
new beams of light are emitted orthogonally from the stop-
ping point, one to left and the other to right. When they
hit the edges of the black area, a new run is defined from
one edge of the black area to the other as the union of

Fig. 7. The principle of the Orthogonal Zig-Zag (OZZ) vectoris-
ation algorithm.

the two collinear screening runs. The midpoint of this joint
run is recorded, and serves as the source of a new light
beam that is orthogonal to the joint run. The OZZ procedure
continues from this newly emitted light, as shown in the
horizontal case of Fig. 7. After the OZZ procedure hits the
edge of the line, i.e. an end of the black area on one side,
another OZZ procedure starts. It is performed by emitting
a beam of light orthogonal to the first screen line from the
point where that line hit the black area coming from outside
for the first time, if a slant area is visited, as shown in the
slant case of Fig. 7. These midpoints are followed during
the light tracking, and used as the medial axis points of
the bar image. The midpoints are further processed by
polygonalisation, so that the output of OZZ is a set of bars
obtained by breaking the point chain where necessary. Each
detected black area is ‘coloured’ to avoid spending time for
detecting the same area more than once.

After the horizontal pass is finished, a vertical pass is
similarly performed. In the vertical pass, the vertical screen
line goes from top down every n pixels. After the vertical
pass is over, the bars found in the two passes of combined,
and overlapped bars are omitted.

OZZ is time-efficient due to the sparse sampling of the
image. As shown in Fig. 7, the number of pixels visited by
OZZ is linear to the sum of the image’s width and height.
Hence, it is linear to the image resolution. However, it is
also noise-sensitive. Moreover, it is designed to yield bars
only. Hence, curve images are vectorised to a set of bars
that may either overlap each other at their ends or generate
false gaps. Therefore, it does not perform well in vectorising
arc images, as shown in Fig. 11(c).

Elaborating on the OZZ idea, Liu and Dori [39] developed
the Sparse Pixel Vectorisation (SPV) algorithm. SPV
improves the OZZ method in the following ways: (1) The
general tracking procedure starts from a reliable starting
medial axis point found by a special procedure for each
black area; (2) a general tracking procedure is used to
handle all three cases of OZZ, i.e. horizontal, vertical and
slant. Therefore, only one pass of screening is needed, and
the combination of the two passes is avoided, making SPV
faster than OZZ; and (3) a junction recovery procedure is
applied wherever a junction is encountered during line
tracking. The three procedures are presented in detail below.

To start the SPV algorithm, a reliable starting medial
axis point is found first, which is not affected by noise and
inaccuracies at the wire’s end. The first black pixel (P0 in
Fig. 8) is found at the point where a screen line encounters
a black area. Going from P0 to the right until a stop pixel,
we get the first directed run. Going back from P0 to the
left, we get the zero length run. From these two horizontal
black runs we get the horizontal middle run point P1.
Starting from P1, we get the vertical middle run point P2

by finding two opposite vertical black runs. In a similar
manner, we then get the horizontal middle run point P3

from P2. We repeat the process until the distance between
Pi and Pi21 is less than some predefined error, which is
usually 1 and at most 2 pixels. Pi is defined as the starting
medial axis point. In practice, only a few iterations are



17Extracting Visual Information from Line Drawings

Fig. 8. Illustration of the procedure of finding the start medial axis point and the tracking direction.

needed, so P3’ can be used as the first medial axis point for
a vertical bar, and P4’ as the first medial axis point for a
horizontal bar, as shown in Fig. 8.

The lengths of both the horizontal and vertical runs are
known at the first medial axis point Pi. If the horizontal
run is longer than the vertical run, the bar’s inclination is
more horizontal than it is vertical (i.e. its slant is less than
45°), in which case, the length direction is set as horizontal,
otherwise the length direction is defined to be vertical. The
width direction is defined to be orthogonal to the length
direction. If the length direction is horizontal, the tracking
is done first to the right, then to the left, and if the length
direction is vertical, the tracking is done first downwards,
then upwards.

As Fig. 9(a) shows, going from the first medial axis point
P3 in the tracking direction, which is vertical, the main
Sparse Pixel Tracking procedure for this black area starts.
To start the tracking cycle, a tracking step is taken from

Fig. 9. Illustrations of the general procedure of the sparse pixel
tracking. (a) A vertical tracking case, (b) a horizontal tracking case.

the last medial axis point, which reaches point P4. From P4

two opposite directed width runs are made. From these runs,
the (undirected) width run and its middle run point, P5,
are obtained. P5 serves as the new medial axis point. This
concludes one tracking cycle. These tracking cycles repeat
while the medial axis points and the width run lengths are
recorded and monitored, as long as all of the following four
continuation conditions are satisfied:

1. Width preservation. The largest difference among line
widths, represented by the width runs found during track-
ing, along a neighbourhood of some small number of
adjacent medial axis points, is below some threshold, e.g.
50% of the neighbourhood average width.

2. Sole occupancy. The medial axis point should not be in
an area occupied by another vector that has already
been detected.

3. Direction consistency. The pixel visiting direction is the
same as the pixel visiting direction of the previous track-
ing cycle.

4. Positive tracking step length. The length of the tracking
step is greater than zero.

The first three conditions are usually violated at a junc-
tion, a black area neighbourhood of a cross, a branch or a
corner. A free (isolated) end of a line may also violate the
first or the fourth condition. Curves may cause violations
of the third condition, i.e. the direction consistency.

When one or more of the first three continuation con-



18 L. Wenyin and D. Dori

Fig. 10. Demonstration of the junction recovery procedure. (a)–(d) Cross case, (e)–(i) corner case.

ditions is violated, the Sparse Pixel Tracking procedure
pauses, and a Junction Recovery Process starts using the
Junction Recovery Procedure, as exemplified by a cross and a
corner in Fig. 10. Junction recovery is an iterative procedure
consisting of three steps: (1) retreating to the last medial
axis point; (2) adjusting the tracking step length by half-
sizing the length of the current tracking step; and (3) testing
the conditions at the new position. If the test fails, i.e. the
new medial axis point also violates one of the above con-
ditions, a new iteration is reapplied with the tracking step
half-sized again. The iterations halt when the tracking step
becomes zero, as in the fourth condition. If all the conditions
are met again at the new medial axis point, then we
continue the general Sparse Pixel Tracking procedure, using
the normal tracking step from the new medial axis point.
By so doing, the procedure may overcome some uneven
area, where the width runs are significantly different, as
demonstrated in Figs 10(a–d). If the tracking step length
becomes zero, the tracking stops at the last medial axis
point, as in the case of a corner, shown in Figs 10(e–i).

Figure 11(d) has shown the SPV improvement to the
OZZ algorithm and the HT-based method. SPV is used in
the Machine Drawing Understanding System [40], which

Fig. 11. Comparison of HT, OZZ and SPV results. (a) Original
image, (b) HT-based vectorisation, (c) OZZ vectorisation, (d) SPV.

provides a good preprocessing basis for graphics recognition.
This is verified by the automatic evaluation as high speed
and good quality using the protocol proposed by Liu and
Dori [41]. SPV has also been successfully used for line
detection by Yoo et al [42].

8. POLYGONALISATION ALGORITHMS

The result of the line tracking procedure is a chain of
points (or polyline) that are on the approximate medial axis
of the black area. Although it can also be regarded as a
vector representation of this black area, some intermediate
points are redundant because they are (approximately) on
the straight line segments formed by their neighbours. To
obtain the most concise vector representation of this black
area, these points should be removed from the chain list.
This should result in a polyline with the fewest edges (or
vertices) to approximate the original one, while maintaining
the original shape. A polygonal approximation procedure,
or polygonalisation, does this. Most vectorisation methods
apply polygonalisation to the tracked coarse polyline. To
preserve the original shape, a value denoted by e is prede-
fined as a parameter to decide which points should be
removed, and therefore to constrain the precision of the
resulting polyline. As the e value gets smaller, there are
more vertices, but the edge accuracy is improved. e can be
set to be 1–2 pixels to preserve the original shape as much
possible. In polygonal approximation of lines in engineering
drawings, however, e can be set up to half of the line width.

The criticality of a point in a point chain is determined
by its distance to the line formed from its two neighbouring
critical points on both sides. Polygonalisation leaves as few
critical points in the point chain as possible. The removal
criterion is that the distance between each non-critical point
P and the line joining the two neighbouring critical points
on both sides of P is less than e. However, the best set
of critical points is usually not known in advance. The
determination of critical points is the main procedure of
polygonalisation.

The various polygonalisation algorithms can be classified
into two groups. The first class of methods includes those



19Extracting Visual Information from Line Drawings

of Montanari [43] and Hung and Kasvand [44], who use a
global method to examine the criticality of points. The
second class of methods, which includes those of Sklansky
and Gonzalez [45] and Jimenez and Navalon [29], applies
local optimisation. Here, the polygonalisation is done by
going ahead from a new critical point (one endpoint of the
chain is a critical point for initialisation) each time, and
finding as many intermediate non-critical points as possible
before the next critical point is found. Montanari [43] uses
an iterative method in the polygonalisation procedure. On
each iteration the critical points are moved so that as many
points as possible are collinear, subject to the constraint
that no point may move outside a small circle around its
original position, whose radius is e. Intermediate collinear
points are then removed. Convergence is claimed within 10
iterations for most cases. The polyline generated has the
smallest perimeter, but the iterative nature of the method
makes it slow. Moreover, the remaining critical points are
not at their original position. This may not be allowed in
some applications. For instance, exact vertex locations are
essential for arc approximation.

Hung and Kasvand [44] start with a perfectly 8-connected
thin binary line, and calculate some defined functions for
each pixel on the line. A complex set of rules is then
applied to these pixels to determine the criticality of each
pixel. Due to the global nature, this method produces a
good approximation to the original line. The computation
time is linear to the number of original points on the
line. However, the requirement of 8-connectivity avoids its
application to other forms of tracked point chains, such as
the sparse point chains resulting from OZZ and SPV.

Sklansky and Gonalez [45] developed a polygonalisation
algorithm using the idea of gradually shrinking a wedge to
find the next local critical point. The principle is illustrated
in Fig. 12. In Sklansky and Gonzalez’s method, a wedge
formed by two tangents from the start critical point (such
as P0 in Fig. 12) to circles with radius of e around each
new point is used to limit the possible positions of the next
critical point. The points outside this wedge are out of the

Fig. 12. Sklansky and Gonzalez’s method for polygonal approxi-
mation.

domain constrained by e. The wedge is modified with each
new point, so that it forms the intersection of the wedges
from all points so far. When the wedge shrinks to a line,
the last point to fall inside the wedge will be marked as
critical and taken as the new initial point. Figure 12 illus-
trates this method. Point P1 yields the wedge W1, P2 yields
W2 and P3 yields W3. Note that W3 shares a line with W2,
since the tangents to P3 do not fall entirely within the
wedge W2. So does W4 for the same reason, but unlike P3,
which falls inside W2, P4 does not fall inside W3. So when
the wedge for P5 is outside W4 and the scanning stops, P3

is marked as critical because it is the last one which fell
within the wedge.

Jimenez and Navalon [29] also use a local optimisation
similar to Sklansky and Gonzalez [45]. However, their algor-
ithm relies on the following assumption. Given a start
critical point Pi and the next candidate critical point Pj for
i , j, the function D(i,j) is defined as

D(i,j) = maximum of the distances of point Pk (for i
, k , j) to the line segment joined by Pi and Pj

They assume that D(i,j) is non-decreasing while j
increases. Therefore, a binary search method can be used
in the polygonalisation procedure. For each Pi, the points
Pj for j = i+2m, where m = 0, 1, 2, %, are checked in
sequence if D(i,j) is greater than the error. The last point
Pj, whose D(i,j) is less than e is critical, and the points
between Pi and Pj are removed. The time complexity is
likely to be logarithmic due to the binary search. However,
the assumption is not always true. Therefore, it is limited
to convex polylines.

Among the above four polygonalisation algorithms, that
of Sklansky and Gonzalez [45] is suitable for all applications.
Although it cannot guarantee the minimum number of
critical points due to its one-pass local optimisation, it is
very time efficient, and the criticality of the remaining
points is guaranteed. Moreover, the algorithm is theoretically
sound and quite simple to implement. In general, the time
complexity of this method is linear to the number of the
original vertices. This is confirmed by the experiments of
Dunham [46], who also shows that the number of remaining
critical points is the smallest from among the nine algor-
ithms tested. We use Sklansky and Gonzalez’s [45] poly-
gonalisation to process the point chain obtained from the
SPV algorithm.

After the fine polyline has been determined, the line
width can be calculated from the average of the width at
each intermediate point of the polyline. The procedure can
be applied to all groups of vectorisation methods. If the
width information is not recorded, as is the case with
some thinning-based methods, the original image should be
consulted to get the width at these points. Other vectoris-
ation methods keep the width information during line track-
ing, simplifying the final width calculation. For example, in
SPV, the width run at each vertex of the polyline is
projected on the normal line at that point, and the weighted
average of these projected runs is taken as the line width
of the polyline.



20 L. Wenyin and D. Dori

Table 1. Comparison of vectorisation method features

Method Subprocess Time Quality Line width Junction Image Applications Examples
sequence* complexity of line preservation recovery constraints

geometry

HT based HT,t quadric poor no yes sparse, Dori [1]
straight

Iterative s, t cubic high no no clean, thin Fahn et al [6], Kasturi et al
thinning [7], Nagasamy and Lang-

rana [8]
Contour Edge quadric poor yes no straight Jimenez and Navalon [29]

detection, t
Run-graph run-graph quadric poor yes no straight Boatto et al [32]

construction, t
Mesh s while t linear poor yes yes sparse, Vaxivere and Tombre [35]

long
OZZ s while t linear poor yes yes straight Dori et al [38]
SPV s while t linear good yes yes Liu and Dori [40], Yoo et

al [42]

*s means medial axis points sampling and t means line tracking

9. SUMMARY

Vectorisation is the most fundamental operation in docu-
ment analysis, recognition and interpretation of line draw-
ings in general, and technical documents in particular. It
has to be implemented using a vectorisation method that
best suits the needs of the system. Good methods should
preserve the shape information, which includes line width,
line geometry and intersection junction, as much as possible.
This information is important for post-processing. To be of
practical use in engineering systems, the vectorisation
method should be fast enough. This paper has provided a
survey of the various vectorisation methods useful for docu-
ment analysis systems developers when selecting the most
adequate method. To compare the vectorisation methods
discussed in this paper, we list their main features in Table 1.

While a few benchmark-like contests have been organised
around particular topics like dashed lines recognition [47]
and engineering drawing recognition performance in general,
no benchmarking-based performance evaluation and analysis
has been conducted on vectorisation. This is in contrast
with the centrality and importance of this process as the
foundation of any line drawing recognition system. Con-
ducting such a benchmark test will raise an important
contribution to the domain of pattern recognition in general,
and document analysis and recognition in particular.

References

1. Dori D. Orthogonal Zig-Zag: an Algorithm for Vectorizing
Engineering Drawings Compared with Hough Transform.
Advances in Engineering Software 1997;28(1):11–24

2. Hough PVC. A method and means for recognizing complex
patterns. USA Patent 3,096,654, 1962

3. Tamura H. A Comparison of line thinning algorithms from
digital geometry viewpoint. Proceedings of the 4th International
Conference on Pattern Recognition, Kyoto, Japan, 1978, pp
715–719

4. Smith RW. Computer processing of line images: A survey.
Pattern Recognition 1987;20(1):7–15

5. Lam L, Lee SW, Suen CY. Thinning methodologies – A
comprehensive survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence 1992;14(9):869–887

6. Fahn CS, Wang JF, Lee JY. A topology-based component
extractor for understanding electronic circuit diagrams. Com-
puter Vision, Graphics and Image Processing 1988;44:119–138

7. Kasturi R, Bow ST, El-Masri W, Shah J, Gattiker JR, Mokate
UB. A system for interpretation of line drawings. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
1990;12(10):978–992

8. Nagasamy V, Langrana N. Engineering drawing processing and
vectorisation system. Computer Vision, Graphics and Image
Processing 1990;49(3):379–397

9. Hori O, Tanigawa S. Raster-to-vector conversion by line fitting
based on contours and skeletons. Proceedings 2nd International
Conference on Document Analysis and Recognition, Tsukuba,
Japan, 1993, pp 623–626

10. Haralick RM, Shapiro L. Computer and Robot Vision. Addison
Wesley, 1992.

11. Montanari U. Continuous skeletons from digitized images. Jour-
nal of the ACM 1969;16:534–549

12. Pfaltz JL, Rosenfeld A. Computer representation of planar
regions by their skeletons. Communications of the ACM
1967;10:119–125

13. Davies ER, Plummer APN. Thinning algorithms: a critique and
a new methodology. Pattern Recognition 1981;14:53–53

14. Naccache NJ, Shinghal R. An investigation into the skeletoniz-
ation approach of Hilditch. Pattern Recognition 1984;17:279–
284

15. Naccache NJ, Shinghal R. SPTA: a proposed algorithm for
thinning binary patterns. IEEE Transactions on System, Man,
and Cybernetics 1984;14:409–418

16. Rosenfeld A, Pfaltz JL. Sequential operations in digital picture
processing. Journal of the ACM 1966;13:471–494



21Extracting Visual Information from Line Drawings

17. Peleg S, Rosenfeld A. A Min-max medial axis transformation.
IEEE Transactions on Pattern Analysis and Machine Intelligence
1981;3:208–210

18. Nalwa VS. A Guided Tour of Computer Vision. Addison-
Wesley, 1993

19. Hilditch CJ. Linear skeletons from square cupboards. Machine
Intelligence 1969;4:403–420

20. Rosenfeld A. Connectivity in digital pictures. Journal of the
ACM 1970;17:146–160

21. Deutsch ES. Thinning algorithms on rectangular, hexagonal and
triangular arrays. Communications of the ACM 1972;15:827–837

22. O’Gorman L. k 3 k thinning. Computer Vision, Graphics and
Image Processing 1990;51:195–215

23. Rosenfeld A, Pfaltz JL. Distance functions in digital pictures.
Pattern Recognition 1968;1:33–61

24. Watson LT, Arvind K, Ehrich RW, Haralick RM. Extraction
of lines and regions from greytone line drawing images. Pattern
Recognition 1984;17:493–507

25. Lee S, Lam L, Suen CY. Performance evaluation of skeletoniz-
ation algorithms for document image processing. Proceedings 1st
International Conference on Document Analysis and Recog-
nition, Saint-Malo, France, 1991, pp 260–271

26. Lam L, Suen CY. Evaluation of thinning algorithms from an
OCR viewpoint. Proceedings 2nd International Conference on
Document Analysis and Recognition, Tsukuba, Japan, 1993, pp
287–290

27. Jaisimha MY, Haralick RM, Dori D. A methodology for the
characterization of the performance of thinning algorithms. Pro-
ceedings 2nd International Conference on Document Analysis
and Recognition, Tsukuba, Japan, 1993, pp 282–286

28. Cordella LP, Marcelli A. An alternative approach to the per-
formance evaluation of thinning algorithms for document pro-
cessing applications. In: Kasturi R, Tombre K (eds). Graphics
Recognition – Methods and Applications (Lecture Notes in
Computer Science, 1072). Springer-Verlag Berlin, 1996, pp
13–22

29. Jimenez J, Navalon JL. Some experiments in image vectorisation.
IBM Journal of Research and Development 1982;26:724–734

30. Shapiro B, Pisa J, Sklansky J. Skeleton generation from x-y
boundary sequences. Computer Graphics and Image Processing
1981;15:136–153

31. Di Zenzo S, Morelli A. A useful image representation. Proceed-
ings 5th International Conference on Image Analysis and Pro-
cessing, Word Scientific Publishing, Singapore, 1989, pp 170–
178

32. Boatto L et al. An Interpretation System for Land Register
Maps. IEEE Computer 1992;25(7):25–32

33. Monagan G, Roosli M. Appropriate base representation using a
run graph. Proceedings 2nd International Conference on Docu-
ment Analysis and Recognition, Tsukuba, Japan, 1993, pp
623–626

34. Lin X, Shimotsuji S, Minoh M, Sakai T. Efficient diagram
understanding with characteristic pattern detection. Computer
Vision, Graphics and Image Processing 1985;30:84–106

35. Vaxiviere P, Tombre K. Cellestin: CAD conversion of mechan-
ical drawings. IEEE Computer 1992;25(5):46–54

36. Vaxiviere P, Tombre K. Subsampling: A structural approach to
technical document vectorisation. In: Dori D, Bruckstein A
(eds), Shape, Structure and Pattern Recognition (Proceedings
of the IAPR Workshop on Syntactic and Structural Pattern
Recognition, Nahariya Israel, 1994). World Scientific, 1995, pp
323–332

37. Chai I, Dori D. Orthogonal Zig-Zag: An efficient method for
extracting lines from engineering drawings. In: Arcelli C,
Cordella LP, Sanniti di Baja G (eds), Visual Form. Plenum
Press, 1992, pp 127–136

38. Dori D, Liang Y, Dowell J, Chai I. Spare pixel recognition
of primitives in engineering drawings. Machine Vision and
Applications 1993;6:79–82

39. Liu W, Dori D. Sparse pixel tracking: a fast vectorisation
algorithm applied to engineering drawings. Proceedings 13th
International Conference on Pattern Recognition, Volume III:
Robotics and Applications, Vienna, Austria, 1996, pp 808–811

40. Liu W, Dori D. Automated CAD Conversion with the machine
drawing understanding system. Proceedings 2nd IAPR Workshop
on Document Analysis Systems, Malvern, PA, 1996, pp 241–259

41. Liu W, Dori D. A protocol for performance evaluation of line
detection algorithms. Machine Vision Applications
1997;9:240–250

42. Yoo J-Y, Kim M-K, Kwon Y-B. Information extraction from a
skewed form document in the presence of crossing characters.
In: Tombre K, Chhabra A (eds). Graphics Recognition – Algor-
ithms and Systems (Lecture Notes in Computer Science, 1389).
Springer-Verlag, 1998, pp 139–148

43. Montanari U. A note on the minimal length polygonal approxi-
mation to a digitized contour. Communications of the ACM
1970;13(1):41–47

44. Hung SHY, Kasvand T. Critical points on a perfectly 8- or
perfectly 6-connected thin binary line. Pattern Recognition
1983;16:297–284

45. Sklansky J, Gonzalez V. Fast polygonal approximation of digit-
ized curves. Pattern Recognition 1980;12:327–331

46. Dunham JG. Optimum uniform piecewise linear approximation
of planar curves. IEEE Transactions on Pattern Analysis and
Machine Intelligence 1986;8(1):67–75

47. Dori D, Liu W, Peleg M. How to win a dashed line detection
contest. In: Kasturi R, Tombre K (eds), Graphics Recognition –
Methods and Applications (Lecture Notes in Computer Science,
1072). Springer-Verlag, Berlin, 1996, pp 286–300

Liu Wenyin is a Researcher at Microsoft Research, China, and a faculty member
at the Department of Computer Science and Technology, Tsinghua University,
Beijing, China. He received his BEngg and MEngg. in Computer Science from the
Tsinghua University in 1988 and 1992, respectively, and his DSc in Information
Management Engineering from Technion – Israel Institute of Technology, in
1998. His research interests include automated engineering drawing interpretation,
pattern recognition, software engineering, object-oriented programming, object-
process methodology, artificial intelligence and computer graphics. Liu Wenyin
developed the Machine Drawing Understanding System (MDUS), and won first
place in the Dashed Line Recognition Contest held during the First IAPR
Workshop on Graphics Recognition at Pennsylvania State University in 1995.
He also won a third prize in the First International Java Programming Contest
(ACM Quest for Java’97), sponsored by ACM and IBM, in 1997.

Dov Dori has been a faculty member at The William Davidson Faculty of
Industrial Engineering and Management, Technion, Israel Institute of Technology
since 1991. He received his BSc in Industrial Engineering and Management from
the Technion in 1975, his MSc in Operations Research from Tel Aviv University
in 1981, and his PhD in Computer Science from the Weizmann Institute of
Science, Rehovot, Israel, in 1988. His research interests include document analysis
and recognition, computer vision and pattern recognition, information systems
engineering, systems development methodologies and computer-aided software
engineering. Dr Dori is Associate Editor of IEEE Transactions on Pattern Analysis
and Machine Intelligence, and is on the editorial board of the International Journal
of Document Analysis and Recognition and of the International Journal of Pattern
Recognition and Artificial Intelligence. He is senior member of the IEEE and a
member of the IEEE Computer Society, ACM and IAPR.

Correspondence and offprint requests to: L. Wenyin, Microsoft Research, Sigma
Center, #49 Zhichun Road, Beijing 100080, PR China.


