
Softw Syst Model
DOI 10.1007/s10270-007-0079-3

REGULAR PAPER

Reusing semi-specified behavior models in systems analysis and design

Iris Reinhartz-Berger · Dov Dori · Shmuel Katz

Received: 3 January 2006 / Revised: 13 May 2007 / Accepted: 13 December 2007
© Springer-Verlag 2008

Abstract As the structural and behavioral complexity of
systems has increased, so has interest in reusing modules in
early development phases. Developing reusable modules and
then weaving them into specific systems has been addressed
by many approaches, including plug-and-play software com-
ponent technologies, aspect-oriented techniques, design pat-
terns, superimposition, and product line techniques. Most of
these ideas are expressed in an object-oriented framework,
so they reuse behaviors after dividing them into methods that
are owned by classes. In this paper, we present a crosscut-
ting reuse approach that applies object-process methodology
(OPM). OPM, which unifies system structure and behavior
in a single view, supports the notion of a process class that
does not belong to and is not encapsulated in an object class,
but rather stands alone, capable of getting input objects and
producing output objects. The approach features the ability to
specify modules generically and concretize them in the target
application. This is done in a three-step process: designing
generic and target modules, weaving them into the system
under development, and refining the combined specification
in a way that enables the individual modules to be modified
after their reuse. Rules for specifying and combining mod-
ules are defined and exemplified, showing the flexibility and
benefits of this approach.

Communicated by Dr. Kevin Lano.

I. Reinhartz-Berger (B)
University of Haifa, Carmel Mountain, 31905 Haifa, Israel
e-mail: iris@mis.haifa.ac.il

D. Dori · S. Katz
Technion-Israel Institute of Technology,
Technion City, 32000 Haifa, Israel
e-mail: dori@ie.technion.ac.il

S. Katz
e-mail: katz@cs.technion.ac.il

Keywords Software reuse · Aspect-oriented software
engineering · Aspect-oriented modeling · Object-Process
Methodology · Modularity

1 Introduction

The last few decades have witnessed increasing interest in
software reuse, i.e., the use of existing software artifacts
or knowledge to create new software [20]. Software reuse
aims at improving software quality and productivity by inte-
grating existing modules, such as commercial off-the-shelf
(COTS) products or tested modules from other projects. Early
software reuse emphasized combining reusable source code
modules to produce application software [39]. The object-
oriented paradigm has highlighted the importance of reus-
ability as part of the entire software system development
process by using classes, packages (modules), and the inheri-
tance mechanism as primary linguistic vehicles for reuse [8].
The current definition of software reuse encompasses the
variety of resources that are generated and used during the
development process, including requirements, architecture,
design, implementation, and documentation. In this paper,
we focus on reusing analysis and design models.

Software engineering approaches refer to reuse in vari-
ous ways. Plug-and-play software component technologies
incorporate existing complete, stand-alone modules, such as
packages or classes, into new applications via the modules’
interfaces [6,38]. Design patterns describe key aspects of
successful solutions to design problems along with the bene-
fits and tradeoffs related to using those solutions [22,36,56].
Reuse of design patterns is usually achieved through parame-
terization and binding capabilities. Aspect-oriented and
superimposition methods separate the system being
developed into several different aspects or concerns that

123

I. Reinhartz-Berger et al.

might cut across the system structure [2,5,9,10,31]. These
aspects are woven and integrated into the complete system
by copying, inheriting, or wrapping them. Product line tech-
niques, such as [21], explicitly capture the commonality and
variability in the family of systems that constitutes the prod-
uct line. These techniques reuse the generic product line arti-
facts by refining them in individual applications.

Most of these approaches apply object-oriented
techniques. While object-orientation has many advantages,
such as standardization, encapsulation of object data and
implementation, and easier maintainability, it distributes sys-
tem behavior and functionality among the different structures
(objects) of the system. Hence, reusing behavioral (process-
oriented) modules in the object-oriented approach requires
special, often unnatural and complicated techniques for
incorporating reused behaviors into existing systems. In this
work, we suggest Object-Process Methodology (OPM) as
the basis for a general-purpose approach, which facilitates
reuse of generic modules that combine structure and behav-
ior in a unified, intertwined way. This approach can be used
to augment target designs. OPM [14] extends the object-
oriented paradigm with a new entity, called process class
(or process for short), which is a pattern of transformation
(consumption, generation, or change) that objects (possibly
from different object classes) undergo. The system’s struc-
ture, behavior, and function are unified into a single, coherent
view, enabling reuse that is based on that view. The proposed
reuse approach entails the design of generic, partially spec-
ified (“half baked”) modules and their integration with the
system under construction. After the initial integration of the
modules, the system is further enhanced (“fully baked”) and
optimized in a way that best suits the task at hand while main-
taining the original core function of the individual modules.

The paper is organized as follows. Section 2 reviews
existing techniques for reusing specifications and designs. It
argues that these techniques become complicated and inad-
equate when the modules are process-oriented. Section 3
briefly describes OPM, while Sect. 4 specifies rules for weav-
ing and integrating modules in OPM and discusses the seman-
tics of the resulting woven modules. Section 5 demonstrates
the approach on a case study of a Web-based accelerated
search system and discusses our findings. Finally, Sect. 6
summarizes the contributions of this work and relates to
future work.

2 Reuse of design modules in modeling techniques

Current object-oriented modeling techniques and languages,
notably UML [41], emphasize the importance of reuse dur-
ing the development process and facilitate it through classes,
packages, and the inheritance mechanism [33,37]. From a

reuse perspective, once the classes and packages have been
modeled, they are usually treated as closed, black boxes with
interfaces, through which other parts of the module or other
modules can communicate. While this approach improves
maintainability of large systems, it hinders reusing generic
modules with behavior that crosscuts the structure of the
application under development. Mezini and Lieberherr [38]
claim that object-oriented programs are more difficult to
maintain and reuse because their functionality is spread over
several classes, making it difficult to get the “big picture.”
They suggest designing modules that facilitate the construc-
tion of complex systems in a manner that supports the evo-
lutionary nature of both structure and behavior.

To respond to this challenge, aspect-oriented program-
ming (AOP) [31,54] modularizes the features for a partic-
ular concern that cuts across multiple classes and enables
these features to be woven, i.e., incorporated and integrated,
into the system model at the level of programming languages.
Superimposition language constructs [5,7,9,29] similarly
extend the functionality of process-oriented systems, again
cutting across the software architecture of process hierarchy.
These techniques allow the imposition of predefined, yet con-
figurable, types of functionality with reusable modules.

Several attempts have been made to extend the aspect
notion from programming to “early aspects” [19]. These
attempts deal with crosscutting concerns in the early life
cycle phases, including requirements analysis, architecture
design, and detailed design stages. The “early aspects”
approaches handle different activities, including aspect iden-
tification, aspect representation, weaving guidelines defini-
tion, and weaving application. They differ in the phases they
mainly support, in their declared goals, in the supported
crosscutting elements, and in their specification means. Most
of them use UML as their modeling language and employ dif-
ferent sets of stereotypes to model the new aspect-oriented
concepts.

Katara and Katz [28] view aspects as augmentations that
map an existing design artifact into a new one with changes
or additions. Their framework, which is applied to UML,
has some similarities to our approach, but since they use
UML, they must treat each diagram type separately, requir-
ing special consistency treatment. They also need to indicate
dependencies and interactions among aspects.

Baniassad and Clarke [4,12] have promoted the notion of
a “Theme”, which is a design element or a view of the sys-
tem object that helps focus on only a portion of the object
model that is relevant to a particular piece of functionality.
The approach is divided into two parts: Theme/Doc, which
enables identifying and isolating concerns in the require-
ments engineering phase, and Theme/UML, which aims at
modeling those concerns. Within Theme/UML [11,13],
UML is extended with two types of composition relations,
merge and override, which involve an entire UML unit

123

Reusing semi-specified behavior models

(e.g., attribute, method, or class). This extension handles
(at least for now) only class and sequence diagrams.

Kande [27] proposes a perspectival concern-space (PCS)
technique for depicting concerns of multiple dimensions in
an architectural view consisting of one or more models and
diagrams. The PCS framework provides means for compos-
ing and decomposing different concern spaces. The goal of
this approach is to develop architecture with concerns as pri-
mary dimensions. The aspect-oriented generative approach
(AOGA) [32] is an architecture-centric method whose pur-
pose is to support multi-agent system development by pro-
viding domain-specific languages, modeling notations, and
code generation tools. In addition to central (knowledge)
components that modularize the non-crosscutting features
associated with the agent knowledge, they provide aspec-
tual components that separate the crosscutting agent features
from each other and from the knowledge components. The
aspect-oriented design model (AODM) [55] introduces UML
stereotypes, tagged values, and constraints that enable rep-
resenting the aspect-oriented design concepts that are speci-
fied in AspectJ [3]. Aldawud et al. [1] present a UML profile
and stereotypes that extend UML semantics and specify the
structure of system and aspect models in terms of class dia-
grams, while behavior is modeled using statechart, use case,
state machine, and collaboration diagrams. There are also
approaches intended to treat the entire software development
cycle [2,24].

Many of these and other “early aspects” approaches reuse
programming-level concepts without adaptation. Hence, they
fall short of considering the entire spectrum of modeling con-
cepts not present in programming languages, such as differ-
ent views of the application’s structure and behavior [50].

In the context of reusable components, Catalysis [17] is
a methodology for component and framework-based devel-
opment that provides consistency rules across models, and
mechanisms for composing these views to describe complete
systems. Troll [18] suggested adding parameterization and
binding capabilities to UML packages.

Design patterns [22] also tackle some reuse challenges
by describing common design solutions for recurring design
problems. They are typically described using a combination
of natural languages, UML diagrams, and program code. To
overcome the unbalanced representation of the static and
dynamic aspects of design patterns in UML, the notation
can be extended using UML’s stereotype mechanism [36].
This increases the language vocabulary and expressiveness
at the price of increasing its complexity.

Product line techniques enable reuse and concretization
of generic product line artifacts in some specific domain.
Software product line architecture is defined for a family of
products and not for an individual application. Some product
line development approaches provide a generic architecture,
or reference model that depicts only the commonality of the

product line, ignoring variability. Each application starts with
the generic architecture and adapts it as required. Although
this approach provides a better starting point in comparison
to developing a system without any reuse, it fails to capture
knowledge about the variability in the product family [21].
Other approaches explicitly model both commonalities and
differences in the product family. Depending on the devel-
opment approach used (functional or object-oriented), the
product line commonalities are described in terms of com-
mon modules, classes, or components, and the product line
variabilities are described in terms of optional or variant mod-
ules, classes, or components (e.g., [23] and [25]).

The methods surveyed above either reuse complete struc-
tural units, such as packages, or have to deal with augment-
ing the variety of diagrams in ways that cut across class
boundaries, complicating the reuse process. Furthermore,
most methods do not relate to subsequent phases of the sys-
tem development that need to be accounted for after reusing
generic modules. Complete integration often requires that
certain changes be made to parts of the original module units.
This implies that modules cannot be black boxes, but rather
white or transparent boxes, whose contents can be accessed
and modified. This kind of support is often essential for opti-
mizing and enhancing the design of an entire system, a mis-
sion that goes beyond binding existing modules together.

Although UML has advantages when focusing on a spe-
cific (usually structural) part of the modeled system and in
maintaining views of a reasonable size, we found out that
Object-Process Methodology is more suitable for the pur-
pose of our work. In most real-world systems, structure and
behavior are tightly intertwined, and are therefore hard to
separate or isolate for reuse purposes. OPM enables direct
modeling of the coexistence of systems’ structure and behav-
ior in the same view without highlighting one at the expense
of suppressing the other. This way complete behaviors that
cut across system structure can be reused in a clean and clear
way.

3 Object-Process Methodology basics and ontology

Object-Process Methodology (OPM) [14,15,48] is a holistic
approach to the modeling, study and development of systems.
It integrates the object- and process-oriented paradigms into a
single frame of reference. The elements of the OPM ontology
are entities (things and states) and links. A thing is a gener-
alization of an object and a process – the two basic building
blocks of any system expressed in OPM. Objects are things
that have the potential of stable, unconditional physical or
mental existence. An object might have a set of states, each
of which describes a situation at which the object can be at
some point in time. Processes express behavior and enable

123

I. Reinhartz-Berger et al.

the transformation of objects: generation, consumption, or
change of their state (or value).

Structural and behavioral aspects of a system are expressed
through links. Structural links express static, time-indepen-
dent relations between pairs of entities. Structural links spe-
cialize into general (tagged) structural links, and four fun-
damental structural links. A tagged structural link is usually
labeled by a textual tag that is set by the system architect to
convey a meaningful relation between the two linked entities.
The four most prevalent and useful OPM structural relations,
which are termed fundamental structural links, are aggrega-
tion-participation, which denotes whole-part relations, gen-
eralization-specialization, which gives rise to inheritance
or sub-classing relations, exhibition-characterization, which
connects a class to its attributes and/or operations, and classi-
fication-instantiation, which connects object or process
instances to their classes.

Procedural links connect entities to processes in order to
describe the behavior of a system, i.e., how processes trans-
form and use entities. The behavior of a system is described
in three major ways, expressed by three groups of procedural
links: (1) transforming links: processes can transform (gener-
ate, consume, or affect) entities, so transforming links include
result, consumption and effect links; (2) enabling links: enti-
ties can enable processes without being transformed by them.
This type of relation is expressed by instrument and con-
dition links. While the semantics of an instrument link is
“wait until” the condition is met, a condition link expresses
a branching construct (such as if or case); and (3) triggering
links: entities can trigger events that potentially invoke pro-
cesses. This group includes invocation links (which enable
processes to invoke other processes), exception links (which
invoke processes as a result of violating time constraints),
agent links (denoting humans triggering processes), and gen-
eral event links.

Like object-oriented languages, OPM uses packages to
manage system complexity. A package includes a collec-
tion of elements (i.e., objects, processes, and structural and
procedural links). Furthermore, OPM provides three refine-
ment/abstraction mechanisms for managing complexity
within a package. These mechanisms enable specifying a
system to any desired level of detail without losing the “big
picture” and the comprehension of the system as a whole.
Whenever a diagram becomes too crowded or cluttered, a
new diagram that describes a portion of the original diagram
(for example, a process with the related things attached to it)
can be created. The most used refinement/abstraction mech-
anism is in-zooming/out-zooming, in which the inner details
of a thing (usually a process) are exposed/hidden within its
frame. Furthermore, the execution order of sub-processes
within the in-zoomed process is defined by the location along
vertical axis, which specifies the flow of time from top to
bottom. Hence, sequential sub-processes are depicted one

on top of the other, while parallel or independent processes
are presented graphically at the same height. Note that the
new diagram preserves the consistency of the model with the
original, ancestor diagram, so all the diagrams that together
model the system are consistent.

OPM has been used to support the modeling of common
system types, including real-time systems [43], ERP [53],
and Web applications [49]. Experiments have shown that
OPM is more comprehensive than object-oriented, multiple-
view notations in modeling the dynamic and reactive aspects
of systems [44,47] due to its single view and its balanced
treatment of system structure (objects) and behavior (pro-
cesses). Furthermore, OPM’s ontological completeness was
proven according to the Bunge-Wand-Weber (BWW) evalua-
tion framework [53]. Figure 1 summarizes the main concepts
in OPM, their relations, and their graphical symbols.

As an example of an OPM model consider the Product
Handling process depicted in Fig. 2. This process zooms
into three sub-processes, which are executed sequentially.
First, Product Listing produces the Product Report from the
Products in the Product Catalog. Then, Product Updating
is executed, updating the relevant Products. Finally, Consis-
tency Checking creates a Consistency Message which reflects
the status of the Product Catalog. As can be deduced from the
OPM notation, the Products are affected only by the Product
Updating process, while the other two processes only use the
information stored for the Products for respectively creating
Product Report and Consistency Message. Furthermore, each
Product in the Product Catalog may be, at each point in time,
at one of two states: proper or defective.

Reuse of closed structural or behavioral OPM models is
not difficult, especially due to OPM’s refinement/abstraction
mechanisms that enable hiding inner structure and behavior
of entities while leaving their interfaces. However, there are
often recurrent tasks that are tightly interwoven with the rest
of the system and cut across many of its parts. For example,
adding a time recording capability to a process execution
includes adding a timestamp to each relevant item, adding
a function that updates these timestamps, defining triggers
which activate these functions, and so on. In this paper we
introduce and elaborate on an OPM-based transparent reuse
approach, which enables weaving modules containing behav-
ior patterns that cut across the system structure. The key to
our approach is OPM’s inherent interplay and the resulting
synergism between structure and behavior.

4 Weaving OPM modules

An OPM module (or module for short) is a model of a
system, a subsystem, or an aspect. A module can be structural,
behavioral, or a combination of both. We distinguish between
a generic module, which is only partially specified, and a

123

Reusing semi-specified behavior models

Fig. 1 OPM concepts, relations, and graphical symbols

Fig. 2 An OPM model of a product handling process

target module, which is concrete and fully specified to the
level required by the system designer. Generic modules are
designed for reuse; hence they are the main building blocks
of the OPM-based weaving process.

The weaving is done between a pair of modules, of which
one is the generic module and the other is the target module.
The weaving process comprises three steps: (1) designing
generic and target modules, (2) integrating pairs of generic
and target modules to create woven modules, and (3) enhanc-
ing the woven modules into complete systems or applica-
tions. This section explains the semantics of each of these
three steps and specifies rules for checking and validating
the legality of the resulting woven modules.

Fig. 3 A generic Time Stamped Execution module

4.1 Designing generic OPM modules

An important attribute of any OPM element (object, pro-
cess, state, or link) is its affiliation. The two possible values
of the affiliation attribute are systemic and environmental.
A systemic element is affiliated with (belongs to) the system.
An environmental element is affiliated with the environment.
It can be completely external to the modeled system and
interact with it, or it can be partially specified and contain
both environmental and systemic elements.

Figure 3 is an OPM model of a generic Time Stamped
Execution module, which adds time recording capability to

123

I. Reinhartz-Berger et al.

a process execution. This module attaches to a Data Item
a timestamp, called Recorded Time. Data Item is environ-
mental since it needs to be concretely bound to an object
of the target module in the various contexts in which the
Time Stamped Execution module is reused. Recorded Time,
on the other hand, is systemic since it is a local element of the
generic module, and it is independent of any thing existing in
the target module. Similarly, the Time Recording subprocess
within the Time Stamped Executing process is systemic. Data
Handling, which should be bound and adapted to a process
in the target module, is denoted as an environmental process.
The vertical layout of Time Recording above Data Handling
in the context of the enclosing Time Stamped Executing pro-
cess implies that Time Recording is activated first, and only
after its successful termination, Data Handling is executed.

As noted, states and links can also be either systemic or
environmental, just like objects and processes. An environ-
mental state can be owned only by an environmental object,
while an environmental (structural or procedural) link can
connect only a pair of environmental entities (objects, pro-
cesses, or states). An environmental state or link in a generic
module requires the existence of a corresponding state or link
in the target module and thus restricts the modules to which
the generic module can be woven. Figure 3, for example,
requires that Data Item objects will have at least one state,
called created. The environmental effect link between Data
Handling and Data Item in Fig. 3 means that Data Handling
processes affect (change) Data Item objects.

Systemic states and links on the other hand do not impose
constraints on the target modules. The systemic event link
from the state created of Data Item to Timed Stamped Exe-
cuting in Fig. 3, for example, indicates that the process is
triggered each time Data Item enters its created state. In other
words, whenever a new data item is created, the process that
records the time of its creation is invoked.

4.2 Creating woven modules

Having obtained or created a set of generic OPM modules, the
system architect should decide which ones are to be reused by
weaving them into the target module, and how to weave them
so that the resulting model meets the system requirements.
Each (generic or target) module is enclosed in a package,
which is in-zoomed to expose its inner structure and behavior.
As noted, for each pair of modules to be woven, one module
is defined as generic, while the other is the target. Note that a
generic module in one combination can be a target in another,
and vice versa. The result of weaving the generic and target
modules is called a woven module.The woven module can be
entirely concrete (i.e., all of its entities are systemic), or may
still contain one or more environmental elements, implying

that the weaving process has not been completed yet or that
the modeled system includes external entities.

While weaving, the designer has to bind one or more envi-
ronmental entities in the generic OPM module with corre-
sponding (environmental or systemic) entities in the target
module. The generalization-specialization relation is the pri-
mary means for binding an entity from the generic module
to its counterpart in the target module. The generalization-
specialization relation in OPM extends its object-oriented
counterpart by providing not only for object inheritance, but
also for process and state inheritance.

As in the object-oriented paradigm, object inheritance
implies that the sub-object class exhibits at least the same
set of features (attributes and operations) and links as the
super-object class.

Process inheritance extends object inheritance to behav-
ioral elements: the subprocess class has at least the same
interface (i.e., the set of procedural links into and out of the
process) and behavior (i.e., the set of subprocesses) as the
super-process class. The interface and behavior of the inher-
iting process class may be extended. Using process inheri-
tance, things can inherit partially-specified behaviors. This
type of inheritance is difficult to achieve with an object-
oriented modeling language such as UML due to the dis-
tribution of behavior specification over a number of different
views, each modeling partially overlapping portions of the
behavioral aspects. This situation is avoided in OPM by the
recognition of Process as an important (stand-alone) concept.

In state inheritance, the specialized state inherits the struc-
ture (i.e., sub-states) and the interface (i.e., the set of proce-
dural links) in which the generalized state is involved. This
type of inheritance can be done also using UML Statecharts.

In Fig. 4, for example, the generic Time Stamped Exe-
cution module of Fig. 3 is woven into the target product
handling module of Fig. 2, such that the combined specifica-
tion, the woven module, contains two modules. Each of the
three generalization-specialization relations in Fig. 4 binds
an entity of the generic module to a corresponding one in the
target module. These relations imply that (1) Product Han-
dling inherits the systemic Time Recording process (which,
in turn, affects Recorded Time), (2) Product Updating inher-
its the instrument link from Recorded Time, and (3) Product
Handling inherits the event link and is thus triggered when
Data Item is generated, i.e., when it enters its created state.
The state generalization-specialization relation between cre-
ated Data Item and proper Product implies that proper is a
specialization of created, such that Product Handling is trig-
gered whenever Product enters its proper state. This relation
also implicitly connects Data Item to Product (implying that
Product is a Data Item), as stated by the mandatory binding
rule which is one of the OPM weaving rules explained next.

123

Reusing semi-specified behavior models

Fig. 4 An OPM woven module in which the generic Time Stamped
Execution module (top) is woven into the target Product Handling mod-
ule (bottom) via generalization-specialization relations

4.3 OPM weaving rules

OPM modules are required to abide by a set of weaving rules,
which are divided into intra-model weaving rules and inter-
model weaving rules. Intra-model weaving rules state what
can and what cannot be done within a single OPM module
and are elaborated in Sect. 4.3.1. Inter-model weaving rules
concern the weaving of two or more modules; in particular
they deal with weaving a generic module into a target module.
The inter-model weaving rules are discussed in Sect. 4.3.2.

4.3.1 Intra-model weaving rules

The two OPM intra-model weaving rules are refinement and
link attachment.

The refinement rule: An environmental thing in a generic
module can be refined by environmental or systemic ele-
ments (objects, processes, states, and links), while a systemic
thing can be refined only by other systemic elements. This
is because an environmental element is more general and
less restrictive than a systemic one, which is already fully
specified.

An application of this rule is shown in Fig. 3: Time Stamped
Executing must be environmental, since it zooms into (con-
tains, or is refined to show) the environmental process Data

Fig. 5 The possibilities of connecting two entities in a generic OPM
module: the four possible variations of linking an object and a process
with a result link

Handling. Similarly, the object Node must be environmental,
since its attribute Data Item is environmental. The environ-
mental Data Item object owns an environmental state, called
created.

The link attachment rule: In a generic module, an environ-
mental link must connect two environmental entities, while
a systemic link may connect systemic or environmental enti-
ties. This is because an environmental link imposes a require-
ment on the target module, so its two connected entities
should appear also in the target module.

Figure 5 shows the four possible variations of linking an
object and a process with a result link in a generic module.
Two systemic entities or a systemic entity and an environ-
mental one can be linked only by a systemic link (as shown in
Fig. 5a, b, respectively). Two environmental entities
can be linked by either a systemic or an environmental link
(as Fig. 5c, d show). A systemic link between two environ-
mental entities (as in Fig. 5c) implies that the two systemic
entities in the target module, which are bound to their envi-
ronmental counterparts in the generic module, must be con-
nected after the weaving, even though this link had not been
present in the original target module.

4.3.2 Inter-model weaving rules

As OPM modules, woven modules must preserve the intra-
model weaving rules defined in Sect. 4.3.1. In addition, they
must also follow three inter-model weaving rules, which
apply to weaving a generic module with a target one: (1)
mandatory binding, (2) hierarchy structure, and (3) link pre-
cedence.

The mandatory binding rule: If an environmental element
(object, process, state, or link) in a generic module has a
counterpart in the target module 1, then they are bound either
explicitly or implicitly. Explicit binding applies a direct gen-
eralization-specialization relation. In implicit binding, the
generalization-specialization relation is not visible directly.
Rather, it is implied from the context, as follows:

1 As noted, an environmental element can remain unbound in a partic-
ular binding operation, either because the binding process has not been
completed yet or the envioronmental element is completely external to
the modeled system.

123

I. Reinhartz-Berger et al.

1. Binding entities in low levels of hierarchy implicitly
implies binding of entities in higher levels. For each envi-
ronmental entity A which is refined by an environmental
entity B in a generic module, such that B is explicitly
bound to Concrete B in the corresponding target module
and A is not bound at all, a default systemic entity, whose
name is Concrete A, is generated in the target module.
This new entity, Concrete A, is linked to Concrete B in
the target module with the same type of link that A is con-
nected to B in the generic module. In addition, Concrete
A and Concrete B are linked via a generalization-special-
ization relation in the woven module.

2. The implicit binding of an environmental link in a generic
module to a link in the target module is determined by
the bindings of the entities it connects. Specifically, an
environmental link in a generic module, which connects
entities A and B, is implicitly bound to a link in the target
module, which connects entities Concrete A and Con-
crete B, such that A is bound to Concrete A and B—to
Concrete B.

3. Explicit binding of states induces binding of their own-
ing objects. In other words, binding a state concrete s of
an object Concrete A in the target module to an environ-
mental state s of object A in the generic module implies
that Concrete A is also bound to A.

Examples of the above implicit binding can be found in Fig. 4.
The environmental object Node in the generic module of this
figure is not explicitly bound to an object in the target mod-
ule, while its feature Data Item is bound to Product. Hence,
a default systemic object, whose name is automatically set
to Concrete Node, is generated in the target module. This
Concrete Node object exhibits Product as its attribute in the
target module, since Product is bound to Data Item and Node
exhibits Data item. Concrete Node also inherits all the attri-
butes of Node which are specified in the generic module.

The environmental effect link between Data Item and
Data Handling in the generic module in this figure is implic-
itly bound to the systemic effect link between Product and
Product Handling in the target module. In addition, Product
is implicitly bound to Data Item, since the state proper of
Product is bound to the state created of Data Item.

Figure 6 extends the woven module of Fig. 4 with the
above implicit bindings. One should bear in mind that Fig. 6
is only drawn to explicitly illustrate the various bindings, but
the two added bindings (one from Time Stamped Execution to
Product Handling and the other from Data Item to Product)
are implicitly implied from Fig. 4.

The hierarchy structure rule: The hierarchy structure of
entities in a generic module must be congruent with the hier-
archy structure of the corresponding entities that are bound
to them in the target module.

Fig. 6 The woven module of Fig. 4, in which Concrete Node, its bind-
ing with Node, and the binding of Product to Data Item explicitly appear

For example, in the woven module of Fig. 6, Node is
bound to Concrete Node, while Data Item is bound to Prod-
uct. Hence, Concrete Node and Product of the target Product
Handling module must preserve the exhibition-characteriza-
tion relation between Node and Data Item in the generic Time
Stamped Execution module. The same structure exists in the
woven module in Fig. 4, albeit implicitly. A similar situa-
tion holds between Product Handling, Time Stamped Exe-
cuting, Product Updating, and Data Handling. This time the
preserved hierarchy structure is containment (in-zooming)
relations.

The link precedence rule: Environmental links can be
(implicitly) bound to systemic links which are at least as
strong as their environmental counterparts according to the
link precedence order [48]. Generally speaking, OPM’s
procedural link precedence order is such that the trigger-
ing links are the most powerful. These links are followed by
transformation and enabling links, in this order.

As an example, the link precedence rule implies that the
procedural link between Product and Product Updating in
the target module in Fig. 4, which is implicitly bound to the
effect link between Data Item and Data Handling, must be
at least as strong as a transformation link. Hence, Product
and Product Updating can be linked in the target module
by a triggering or transformation link, but not by enabling
links. This is due to the convention that the generic module

123

Reusing semi-specified behavior models

specifies the minimal requirements from the target modules
into which it can be woven.

4.4 Generating merged modules

So far we have seen how a generic module is woven into a tar-
get module, while graphically the two modules remain sepa-
rate and their bindings are maintained in the woven module.
Merging is an alternative view of weaving. A merged mod-
ule is the single module constructed by applying the weav-
ing rules and the semantics of the woven modules defined
and explained above. By definition, a woven module and its
merged counterpart are semantically equivalent.

Figure 7 is the merged module derived from and equiva-
lent to the woven module in Fig. 4. In this merged module,
Concrete Node exhibits two attributes, Recorded Time and
Product, the latter being part of Product Catalog. Zooming
into Product Handling shows that it consists of four subpro-
cesses: Time Recording, Product Listing, Product Updating,
and Consistency Checking. Product Updating, for example,
has an instrument link from Recorded Time, required by the
generic module Time Stamped Execution, and an effect link
with Product, as the target module Product Handling speci-
fies. In other words, Product Updating uses Recorded Time
as input and affects Product. The state proper of Product
inherits an event link to Product Handling from the environ-
mental state created of Data Item in the generic Time Stamped
Execution module.

As noted, the time axis within each in-zoomed process is
directed from the top of the diagram to its bottom. Hence,
two independent or concurrent subprocesses are depicted at
the same vertical level, defining a partial execution order
of the subprocesses. The generalization-specialization rela-
tions between processes of different modules merge the par-
tial orders from each module into a single combined par-
tial order. In Fig. 4, for example, there is a total order in
both the generic module Time Stamped Execution (first Time
Recording and then Data Handling) and in the target mod-
ule Product Handling (first Product Listing, then Product

Fig. 7 The merged module which is derived from and equivalent to
the woven module in Fig. 4

Updating, and finally Consistency Checking). The general-
ization-specialization relation between Data Handling and
Product Updating in Fig. 4 defines a combined, partial order
in the woven module, according to which, Time Record-
ing and Product Listing are independently executed first,
followed by Product Updating, and finally by Consistency
Checking.

After merging the generic module into the target one, if
more than one link exists between two entities in the merged
module, then the link with the higher precedence accord-
ing to the link precedence order prevails. For example, if in
Fig. 4 a systemic enabling link between Data Item and Data
Handling exists in the generic module, it would have been
subsumed by the effect link between Product and Product
Updating in the merged module, because a transformation
link takes precedence over an enabling link.

4.5 Weaving versus merging

A woven module can be maintained either as is, or
as a merged module. Each option has advantages and
disadvantages. The woven module is more succinct and more
abstract than its merged counterpart. Its main advantage is
the ability to maintain and develop the generic and the tar-
get modules separately. When a generic module is improved,
each target module can automatically benefit from this
improvement. The main advantage of the merged module
is the explicit presentation of all its elements from both the
generic and the target modules in a single model. However,
once merged, the module loses its linkage with the generic
module, so changes made to the generic module will not be
reflected in the merged module.

Modules can be maintained in libraries. Using standard
facilities, such as Web services, these libraries can be
searched for and distributed over many nodes (computers).
Adopting a service-oriented architecture (SOA) [26,42]
approach, each time an application is compiled, the most
up-to-date generic modules that comprise the application are
imported, thereby potentially enabling continuous improve-
ment in various performance aspects. In another configu-
ration, only future uses of the new version of the generic
module benefit from the improvements, while existing bind-
ings keep using the version of the module with which they
were originally complied. To increase flexibility and ensure
that the application enjoys potential improvements in generic
library modules, one should maintain the woven module ver-
sions and generate the merged modules only to facilitate the
readability of the entire application.

4.6 Enhancing woven modules

Having created a woven module from two or more mod-
ules (such that generic modules are woven one at a time),

123

I. Reinhartz-Berger et al.

Fig. 8 The Acceleration module. a The top-level diagram. b Accelerating in-zoomed. c Full Process Activating in-zoomed

the system architect can refer to it as a single module and
continue refining the system specification in a separate layer
without affecting the composing generic modules. The weav-
ing layer includes the generalization-specialization relations
and possibly additional links. During the refinement stage
one can enhance the combined module as part of a complete
application, offering functionality that exceeds the sum of
the individual module functionalities. In our example, con-
sider a situation in which we want to use the Recorded Time
(from the generic module) as input for Product Listing (from
the target module), so Product Report will include a record
of the latest time each product was updated. To achieve this,
we can add an instrument (unchangeable input) link between
Recorded Time and Product Listing in the woven module in
Fig. 4. This instrument link, as well as the generalization-spe-
cialization relations between the two modules, is maintained
in the separate layer of the woven module. The weaving
process can also be successively and recursively applied to
reuse additional modules for meeting new requirements or
modeling various concerns or aspects.

5 Evaluation of the OPM-based weaving process

To evaluate the OPM-based weaving process presented in
this paper, we used several case studies, including a Web-
based accelerated search system, which we summarize in this

section2. This system implements an algorithm for improv-
ing the performance of a Web search engine, which employs
time-consuming search algorithms. The design of the Accel-
erated Search System included two modules — a generic
Acceleration module and a target Multi Search one. The
Acceleration module specifies a generic algorithm that
reduces the execution time of an input-output part of a system
by trying first to retrieve the output, which is determined by
the input, from a local database. We assume that the sought
Web-based items rarely change, so they are relatively static.
This implies that results of subsequent activations of a query
with the same input remain valid and can therefore be stored
and retrieved to avoid executing the costly calculation each
time a query with that input is submitted. If the entry is not
already in the database, the algorithm activates a process that
calculates or otherwise obtains the sought output and records
it in the database to accelerate future executions of the query
with the same input. Figure 8 presents the OPM model of
the Acceleration module. Note that the in-zooming mecha-
nism is applied in order to refine and detail processes without
losing their wider context.

The Multi Search module implements a new search engine
that benefits from existing search engines by combining their

2 Due to space limitations, the complete specification of the Web-based
accelerated search system is not given here. It can be found at http://
mis.hevra.haifa.ac.il/~iris/research/WebAcceleratedSearch.pdf

123

http://mis.hevra.haifa.ac.il/~iris/research/WebAcceleratedSearch.pdf
http://mis.hevra.haifa.ac.il/~iris/research/WebAcceleratedSearch.pdf

Reusing semi-specified behavior models

Fig. 9 The Multi Search module. a The top-level diagram. b Multi Searching in-zoomed

results and ordering them according to a weighted score.
Figure 9 presents the OPM model of the Multi Search
module.

Since the Multi Searching process depends on the speed of
each search engine, the network response time, and the num-
ber and size of results supplied by each search engine, we
weave the Acceleration module into the Multi Search mod-
ule, in order for the most recently searched terms and their
corresponding results to be saved in a local database. For each
new query, this local database is searched before invoking the
entire Multi Searching process, and only if the result is not
found there, the system will execute the Multi Searching pro-
cess. Figure 10 shows the generic Acceleration module, from
Fig. 8c, woven into the Multi Search module, from Fig. 9a.
We selected specifically these two diagrams as they best serve
our weaving purposes. The resultant woven module, called
Accelerated Multi Search, includes three generalization-spe-
cialization relations that connect the things in the generic
module to the corresponding things in the target module. Two
of these relations are between object classes, specifying that
Term is an Input and that Search Result is an Output. The third
generalization-specialization relation is between two process
classes, specifying that the systemic Multi Searching process
specializes the environmental Output Computing process.

We found that, in comparison to the object-oriented
approach in general and UML in particular, our approach
expresses more naturally and comprehensively the function-
ality of the generic, target, and woven modules. This, in turn,
stems from OPM’s recognition of process classes as first-
class citizens beside object classes rather than as just meth-
ods encapsulated within object classes. Although some form
of process inheritance is available in UML, since behaviors
can be regarded as classes, the exact functionality of the

Fig. 10 The Accelerated Multi Search module

processes cannot be described this way, and partially spec-
ified behaviors, which are naturally expressed in OPM, can
hardly be supported in UML. Furthermore, in order to express
the models in Figs. 8–10 in UML, one needs to employ UML
use case, class, sequence, and Statechart diagrams, requiring
application of consistency rules among the various views.

123

I. Reinhartz-Berger et al.

Furthermore, the refinement-abstraction mechanisms
within OPM in general and the in-zooming mechanism in
particular enable designers to specify generic modules that
are more detailed than commonly used design patterns. While
adding details to generic modules might reduce the number of
contexts in which the module can be reused, it also provides
a solid template to work with in detailed design phases.

The equivalent semantics of the woven and the merged
modules enables treating woven modules as either generic or
target OPM modules in other weaving operations. The sys-
tem architect can continue specifying the system into which
a module has been woven as a complete application. For
example, in the woven Accelerated Multi Search module,
the Result Merging algorithm within Multi Searching can be
improved by treating DB as an additional input and/or an
entire generic Log Recording module can be introduced3.
Any combination of these two refinements can be part of the
system design.

6 Discussion and future work

We have presented a reuse approach that applies weaving of
generic and target modules expressed in a single modeling
paradigm that combines structure and behavior by presenting
and linking objects and processes in the same single diagram
type. We distinguish between systemic elements that are
fully specified and environmental elements which need more
specification in the target context. Our approach enables the
construction of a system model from modules that can be
either woven or merged. We preferred OPM over UML as
the basis of our work due to its underlying ontology that
allows expressing intricate models that combine structure
and behavior and provide for expressing both generic and
target modules. By representing structure and behavior in a
single diagram type, OPM enables reusing behavioral mod-
ules and organizing their dynamic aspects, such as order-
ing, synchronization, etc., into complete applications. Aug-
mentations that otherwise cut across class boundaries and
diagram types are described naturally in a single, generic
OPM module. This is done with a relatively small vocabu-
lary of elements, greatly reducing the number and severity
of consistency and integration problems, which are known to
be a notorious hindrance in multi-view modeling languages
[45,51,52]. However, some of the ideas in this paper can be
incorporated into the UML framework. For example, state
inheritance can be introduced to UML statechart diagrams,
while environmental vs. systemic elements can be specified
by introducing UML stereotypes.

3 These examples can be found at http://mis.hevra.haifa.ac.il/~iris/
research/WebAcceleratedSearch.pdf

The approach to reuse presented and demonstrated in this
paper advocates maintaining the reusable modules at a high
level of abstraction and refining them in specific contexts.
The OPM combination of object- and process-oriented par-
adigms enables modeling generic behaviors that cut across
system structures and adapting them to specific target mod-
ules in a clean and clear way, making them ideal candidates
for enhancing aspect-oriented modeling [2]. A set of inter-
and intra-weaving rules determines how to define and how to
combine reusable generic modules. The process starts with
developing generic and target modules. It continues with suc-
cessively weaving generic modules into the current target
module by binding elements in the target module to corre-
sponding elements in the generic module via generalization-
specialization links. The resulting combined model can be
further refined into a complete, fully functional application.

Such reuse is transparent, or white-box, rather than black-
box: the generic modules can be modified internally to
improve various performance criteria while maintaining their
interface and intended functionality. This way one can enjoy
the best of both worlds: adapt the model to meet specific
requirements of the system under development while taking
advantage of continuously improving generic modules that
reflect current, constantly updated best practices, which can
be dynamically woven into the applied system.

As a graphical notation, OPM does not presently support
logical (textual) constraints. In order to achieve abstraction,
which is an important key for reuse, the modeling language
should support such constraints and not just visually expres-
sed functional and structural descriptions. Constraints can be
used at the process, object, or module level to specify func-
tionality requirements from an entity. Although not presently
supported in OPM, the Object Constraint Language (OCL)
[40] can be applied as a complementary tool for this purpose
(similarly to the usage of OCL within UML).

Work is under way to support the weaving process
described in this work into Object-Process CASE Tool
(OPCAT) [16], an integrated software engineering environ-
ment, which enables specifying systems in OPM and
simulating them at the design level. In particular, OPCAT
includes an OPM-GCG component, which is a generic code
generator that translates OPM design models to various tar-
get programming languages, including object-oriented ones,
such as Java. The translation rules are defined offline through
a user-friendly tool and can be changed by the designer. These
rules are used by the implementation generator to create
code files from the OPM specification of the merged mod-
ules. Our experience, which is elaborately reported in [46],
shows that the Java code generated by OPM-GCG includes
system behavior (processes, control flows, event triggers,
etc.), as well as structure. Furthermore, comparing this code
to the code generated from a leading UML CASE tool for
analogous UML models, the OPM-GCG code appears to be

123

http://mis.hevra.haifa.ac.il/~iris/research/WebAcceleratedSearch.pdf
http://mis.hevra.haifa.ac.il/~iris/research/WebAcceleratedSearch.pdf

Reusing semi-specified behavior models

simpler, more intuitive, easier to maintain and update, and
more complete, while being almost three times as short as
the code generated by the chosen UML CASE tool. We plan
to introduce into the OPM-GCG rules for translating woven
modules into aspect-oriented programming languages, such
as AspectJ [3], Timor [30], Contexts in .NET [34], or the
container/server model of EJB [35].

References

1. Aldawud, O., Elrad, T., Bader, A.: A UML Profile for Aspect
Oriented Modeling. Proceedings of OOPSLA 2001 Workshop on
Advanced Separation of Concerns in Object-Oriented Systems,
(2001). Available at http://www.cs.ubc.ca/~kdvolder/Workshops/
OOPSLA2001/submissions/26-aldawud.pdf

2. The Aspect-Oriented Software Development Web site. http://www.
aosd.net/

3. AspectJ Web Site. http://www.eclipse.org/aspectj/
4. Baniassad, E., Clarke, S.: Theme: an approach for aspect-oriented

analysis and design. 26th International Conference on Software
Engineering (ICSE 2004), IEEE Computer Society, 2004, pp. 158–
167 (2004)

5. Bouge, L., Francez, N.: A Compositional Approach to Superimpo-
sition. Proceedings of the 15th ACM SIGPLAN-SIGACT sympo-
sium on Principles of Programming Languages, 1998, pp. 240–249
(1998)

6. Barber, K.S., Graser, T.J., Jernigan, S.R.: Increasing Opportunities
for Reuse through Tool and Methodology Support for Enterprise-
wide Requirements Reuse and Evolution. Proc. of the 1st Inter-
national Conference on Enterprise Information Systems, 1999,
pp. 383–390 (1999)

7. Back, R.J.R., Kurki-Suonio, R.: Decentralization of process nets
with centralized control. Distrib. Comput. 3, 73–87 (1989)

8. Booch, G.: Object-oriented analysis and design with application.
Benjamin/Cummings Publishing Company, Inc. (1994)

9. Bosch, J.: Superimposition: a component adaptation technique. Inf.
Softw. Tech. 41(5), 257–273 (1999)

10. Constantinides, C.A., Bader, A., Elrad, T.: An Aspect-Ori-
ented Design Framework for Concurrent Systems. Proceedings
of the European Conference on Object-Oriented Programming
(ECOOP), 1999, pp. 340–352

11. Clarke, S.: Extending standard UML with model composition
semantics. Sci. Comput. Program. 44 (1), 71–100 (2002). http://
www.cs.tcd.ie/people/Siobhan.Clarke/papers/SoCP2001.pdf

12. Clarke, S., Baniassad, E.: Aspect-oriented analysis and design: the
theme approach. The Addison-Wesley Object Technology Series
(2005)

13. Clarke, S., Walker, R.J.: Composition patterns: an approach to
designing reusable aspects. Proceedings of the International Con-
ference on Software Engineering, pp. 5–14 (2001)

14. Dori, D.: Object-process methodology—a holistic systems para-
digm. Springer, Heidelberg (2002)

15. Dori, D.: Why significant UML change is unlikely. Commun.
ACM 45(11), 82–85 (2002)

16. Dori, D., Reinhartz-Berger, I., Sturm A.: OPCAT — A Bimodal
Case Tool for Object-Process Based System Development. 5th
International Conference on Enterprise Information Systems (ICE-
IS 2003), 2003. Software download site: http://www.opcat.com/

17. D’Souza, D., Wills, A.C.: Objects, frameworks and components
with UML — the catalysis approach. Addison-Wesley, Reading
(1998)

18. Eckstein, S., Ahlbrecht, P., Neumann, K.: Increasing Reusability
in Information Systems Development by Applying Generic Meth-
ods. Proceedings of the 13th International Conference CAiSE’01,
LNCS 2068, 2001, pp. 251–266 (2001)

19. Early Aspect website: Aspect-Oriented Requirements Engineering
and Architecture Design. http://www.early-aspects.net/

20. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM
Comput. Surv. 28(2), 415–435 (1996)

21. Gomma, H.: Designing software product lines with UML: from
use cases to pattern-based software Architectures, Addison Wesley,
Reading (2004)

22. Gamma, E., Helm, R., Johnson, R. Vlissides, J.O.: Design patterns.
Addison-Wesley, Reading (1995)

23. Griss M., Favaro J., d’Alessandro M. Integrating Feature Modeling
with the RSEB, Proceedings of the Fifth International Conference
on Software Reuse, pp. 76–85 (1998). http://www.favaro.net/john/
home/publications/rseb.pdf

24. Grundy, J.: Multi-perspective specification, design and implemen-
tation of software components using aspects. Int. J. Softw. Eng.
Knowl. Eng. 10(6), 713–734 (2000)

25. Gurp, J.V., Bosch, J., Svahnberg, M.: On the Notion of Variabil-
ity in Software Product Lines, Working IEEE/IFIP Conference on
Software Architecture (WISCA’01), 2001, pp. 45–54 (2001)

26. IBM Corp. SOA and Web Services. http://www-106.ibm.com/
developerworks/webservices/newto/

27. Kande, M.M.: A concern-oriented approach to software architec-
ture. Computer Science, vol. PhD. Lausanne, Switzerland: Swiss
Federal Institute of Technology (EPFL) (2003). Available at http://
biblion.epfl.ch/EPFL/theses/2003/2796/EPFL_TH2796.pdf

28. Katara, M., Katz, S.: A concern architecture view for aspect-ori-
ented software design. Software and system modeling, Springer,
(2006). doi:10.1007/s10270-006-0032-x

29. Katz, S.: A superimposition control construct for distributed
systems. ACM Trans. Program. Lang. Syst. 15(2), 337–356 (1993)

30. Keedy, L., Heinlein, C., Menger, G.: The Timor Programming
Language. http://www.jlkeedy.net/timor-programming_language.
html

31. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J., M., Irwin, J. Aspect-Oriented Programming.
European Conference on Object-Oriented Programming
(ECOOP’97). LNCS 1241, pp. 220–242 (1997)

32. Kulesza, U., Garcia, A., Lucena, C. Towards a method for
the development of aspect-oriented generative approaches,
Early Aspects workshop, OOPSLA’2004 (2004). Available at
http://trese.cs.utwente.nl/workshops/oopsla-early-aspects-2004/
Papers/KuleszaEtAl.pdf

33. Lester, N.G., Wilkie, F.G., Bustard, D.W.: Applying UML
Extensions to Facilitate Software Reuse. The Unified Modeling
Language (UML’98) - Beyond the Notation. LNCS 1618, pp. 393–
405 (1998)

34. Lowy, J.: Contexts in .NET: Decouple Components by Inject-
ing Custom Services into Your Object’s Interception Chain,
MSDN Magazine—The Microsoft Journal for Developers (2003).
Available at http://msdn.microsoft.com/msdnmag/issues/03/03/
ContextsinNET/#S1

35. Mahapatra, S.: Programming restrictions on EJB, Java World
(2000). Available at http://www.javaworld.com/javaworld/jw-08-
2000/jw-0825-ejbrestrict.html

36. Mapelsden, D., Hosking, J., Grundy, J.: Design Patterns Mod-
elling and Instantiation using DPML. 40th International Confer-
ence on Technology of Object-Oriented Languages and Systems
(TOOLS), (2002). http://www.jrpit.flinders.edu.au/confpapers/
CRPITV10Mapelsden.pdf

37. Mens, T., Lucas, C., Steyaert, P.: Giving Precise Semantics to
Reuse and Evolution in UML. Proc. PSMT’98 Workshop on Pre-
cise Semantics for Modeling Techniques (1998)

123

http://www.cs.ubc.ca/~kdvolder/Workshops/OOPSLA2001/submissions/26-aldawud.pdf
http://www.cs.ubc.ca/~kdvolder/Workshops/OOPSLA2001/submissions/26-aldawud.pdf
http://www.aosd.net/
http://www.aosd.net/
http://www.eclipse.org/aspectj/
http://www.cs.tcd.ie/people/Siobhan.Clarke/papers/SoCP2001.pdf
http://www.cs.tcd.ie/people/Siobhan.Clarke/papers/SoCP2001.pdf
http://www.opcat.com/
http://www.early-aspects.net/
http://www.favaro.net/john/home/publications/rseb.pdf
http://www.favaro.net/john/home/publications/rseb.pdf
http://www-106.ibm.com/developerworks/webservices/newto/
http://www-106.ibm.com/developerworks/webservices/newto/
http://biblion.epfl.ch/EPFL/theses/2003/2796/EPFL_TH2796.pdf
http://biblion.epfl.ch/EPFL/theses/2003/2796/EPFL_TH2796.pdf
http://dx.doi.org/10.1007/s10270-006-0032-x
http://www.jlkeedy.net/timor-programming_language.html
http://www.jlkeedy.net/timor-programming_language.html
http://trese.cs.utwente.nl/workshops/oopsla-early-aspects-2004/Papers/KuleszaEtAl.pdf
http://trese.cs.utwente.nl/workshops/oopsla-early-aspects-2004/Papers/KuleszaEtAl.pdf
http://msdn.microsoft.com/msdnmag/issues/03/03/ContextsinNET/#S1
http://msdn.microsoft.com/msdnmag/issues/03/03/ContextsinNET/#S1
http://www.javaworld.com/javaworld/jw-08-2000/jw-0825-ejbrestrict.html
http://www.javaworld.com/javaworld/jw-08-2000/jw-0825-ejbrestrict.html
http://www.jrpit.flinders.edu.au/confpapers/CRPITV10Mapelsden.pdf
http://www.jrpit.flinders.edu.au/confpapers/CRPITV10Mapelsden.pdf

I. Reinhartz-Berger et al.

38. Mezini, M., Lieberherr, K.: Adaptive Plug-and-Play Components
for Evolutionary Software Development. Conference on Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA), pp. 97–116 (1998)

39. Mili, H., Mili, F., Mili, A.: Reusing software: issues and research
directions. IEEE. Trans. Softw. Eng. 21(5), 528–562 (1995)

40. Object Management Group: Object Constraint Language, Version
2.0 (2005)

41. Object Management Group: The Unified Modeling Language
(UML™), version 2.0 (2005)

42. Papazoglou, M.P.: Service-oriented computing: concepts, char-
acteristics and directions, Proceedings of the 4th IEEE Inter-
national Conference on Web Information Systems Engineering
(WISE’2003), pp. 3–12 (2003)

43. Peleg, M., Dori, D.: Extending the Object-Process Methodology to
handle real-time systems. J. Object. Oriented. Program. 11(8), 53–
58 (1999)

44. Peleg, M., Dori, D.: The model multiplicity problem: experiment-
ing with real-time specification methods. IEEE Trans. Softw. Eng.
26(8), pp. 742–759 (2000). http://iew3.technion.ac.il:8080/Home/
Users/dori/Model_Multiplicity_Paper.pdf

45. Reinhartz-Berger, I.: Conceptual Modeling of Structure and Behav-
ior with UML—The Top Level Object-Oriented Framework
(TLOOF) Approach, the 24th International Conference on Con-
ceptual Modeling (ER’2005), Lecture Notes in Computer Science
3716, pp. 1–15 (2005)

46. Reinhartz-Berger, I., Dori, D.: Object-Process Methodology
(OPM) vs. UML: A Code Generation Perspective, Evaluating Mod-
eling Methods for System Analysis and Design (EMMSAD’04),
Proceeding of CAiSE’04 Workshops, vol. 1, 1004, pp. 275–286

47. Reinhartz-Berger, I., Dori, D.: OPM vs. UML—Experimenting
with Comprehension and Construction of Web Application Mod-
els. Empir. Softw. Eng. 10(1), 57–80 (2005)

48. Reinhartz-Berger, I., Dori, D.: A reflective metamodel of object-
process methodology. In: Green, P., Rosemann, M., (eds.) The Sys-
tem Modeling Building Blocks, chapter 6 in Business Systems
Analysis with Ontologies, Idea Group Inc., (2005)

49. Reinhartz-Berger, I., Dori, D., Katz, S.: OPM/Web – Object-Pro-
cess Methodology for Developing Web Applications. Annals on
Software Engineering – Special Issue on Object-Oriented Web-
based Software Engineering, pp. 141–161 (2002)

50. Schauerhuber, A., Schwinger, W., Kapsammer, E., Retschitzegger,
W., Wimmer M., Kappel, G. A Survey on Aspect-Oriented Mod-
eling Approaches (2006). Available at http://www.bioinf.jku.at/
publications/2006/1506.pdf

51. Siau, K., Cau, C.: Unified modeling language: a complexity anal-
ysis. J. Database Manag. 12(1), 26–34 (2001)

52. Skipper, J.F.: Assessing the Suitability of UML for Captur-
ing and Communicating System Engineering Design Models.
Vitech Corporation, 2002. http://www.vitechcorp.com/infocenter/
SuitabilityOfUMLForSE_2002.pdf

53. Soffer, P., Golany, B., Dori, D., Wand, Y.: Modelling Off-
the-shelf information systems requirements: an ontological
approach. Requir. Eng. 6(3), 183–199 (2001)

54. Special Issue on Aspect-oriented Programming, Communication
of the ACM, 44 (10), 2001

55. Stein, D., Hanenberg, S., Unland, R.: A UML-based Aspect-Ori-
ented Design Notation for AspectJ. Proceedings of the 1st Inter-
national Conference on Aspect-Oriented Software Development,
ACM, pp. 106–112 (2002)

56. Sunye, G., Le Guennec, A. Jezequel, J.M.: Design Patterns Appli-
cation in UML. Proceedings of the 14th European Conference on
Object-Oriented Programming, LNCS 1850, pp. 44–62 (1850)

Author’s Biography
Iris Reinhartz-Berger is a
faculty member at the Depart-
ment of Management Information
Systems, Haifa University, Israel.
She received her BSc degree in
applied mathematics and com-
puter science from the Tech-
nion, Israel Institute of Technol-
ogy in 1994. She obtained a MSc
degree in 1999 and a PhD in
2003 in information management
engineering from the Technion,
Israel Institute of Technology. Her
MSc and PhD dissertations dealt
with improving various develop-

ment phases, mainly design and implementation, in Object-Process
Methodology (OPM). Her research interests include conceptual model-
ing, modeling languages and techniques for analysis and design, domain
analysis, development processes, and methodologies. Her work has
been published in international journals and conferences.

Dov Dori is Head of the
Information Systems Engineering
Area at the Faculty of Industrial
Engineering and Management,
Technion, Israel Institute of Tech-
nology, and Research Affiliate at
Massachusetts Institute of Tech-
nology. His research interests
include Complex Systems Mod-
eling, Systems Engineering and
Architecture, Software Engineer-
ing, and Information Systems
Engineering. Prof. Dori has devel-
oped Object-Process Methodol-

ogy (OPM), a holistic systems paradigm for conceptual modeling,
presented in his 2002 book (by Springer). Prof. Dori has won the Tech-
nion Klein Award for OPM and the Hershel Rich Technion Innovation
Award for OPCAT, the OPM supporting software. Prof. Dori authored
six books and over 100 journal publications and book chapters. He is
Fellow of the International Association for Pattern Recognition and
Senior Member of IEEE and ACM.

Shmuel Katz received his
Ph.D. from the Weizmann Insti-
tute of Science. He heads the
Software Engineering Track of
the Computer Science Depart-
ment of the Technion–Israel
Institute of Technology. He has
written over 70 journal and
conference papers on program
verification, specification, and
methodology. His research inter-
ests include aspect-oriented
programming and software devel-
opment, program verification,

partial order reductions in verification, and translations among veri-
fication and modeling tools. He is the head of the Formal Methods Lab
of the AOSD-Europe Network of Excellence, coordinating work on
formal methods and semantics for aspects.

123

http://iew3.technion.ac.il:8080/Home/Users/dori/Model_Multiplicity_Paper.pdf
http://iew3.technion.ac.il:8080/Home/Users/dori/Model_Multiplicity_Paper.pdf
http://www.bioinf.jku.at/publications/2006/1506.pdf
http://www.bioinf.jku.at/publications/2006/1506.pdf
http://www.vitechcorp.com/infocenter/SuitabilityOfUMLForSE_2002.pdf
http://www.vitechcorp.com/infocenter/SuitabilityOfUMLForSE_2002.pdf

	Reusing semi-specified behavior models in systems analysis and design
	Abstract
	Introduction
	Reuse of design modules in modeling techniques
	Object-Process Methodology basics and ontology
	Weaving OPM modules
	Designing generic OPM modules
	Creating woven modules
	OPM weaving rules
	Intra-model weaving rules
	Inter-model weaving rules
	Generating merged modules
	Weaving versus merging
	Enhancing woven modules
	Evaluation of the OPM-based weaving process
	Discussion and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

