

A Reflective Metamodel of Object-Process Methodology:

The System Modeling Building Blocks

Iris Reinhartz-Berger

University of Haifa

Carmel Mountain, Haifa 31905, Israel

Phone number: 972-4-8288502

Fax number: 972-4-8288522

Email: iris@mis.hevra.haifa.ac.il

Dov Dori

Technion, Israel Institute of Technology

Technion City, Haifa 32000, Israel

Phone number: 972-4-8294409

Fax number: 972-4-8295688

Email: dori@ie.technion.ac.il

 1

A Reflective Metamodel of Object-Process Methodology:

The System Modeling Building Blocks

ABSTRACT

In this chapter, we introduce a highly expressive, self-contained reflective metamodel of

Object-Process Methodology (OPM). OPM enables universal system modeling based on the

notions of processes that transform objects. Extending the object-oriented approach, which

views processes as residents of objects, OPM provides for the existence of stand-alone

processes that can represent transformations in complex systems such as businesses, aircrafts,

or organisms. A system modeling and development methodology, which is a combination of

a language for expressing the universal (or domain) ontology and an approach for developing

systems that uses this language, can be expressed in OPM using objects, processes, and links

among them. Through the reflective OPM metamodel, we demonstrate the expressive power

of OPM and its applicability as a universal tool for architecting systems that involve structure

and dynamics in a highly, intertwined manner.

Keywords: Software Development Methodologies, IS Development Methodologies, Object-

Oriented Design, Functional Design, Ontologies, Metamodel, Metamodeling

INTRODUCTION

A system modeling and development methodology is a combination of a language for

expressing the universal or domain ontology and an approach or a protocol for developing

systems that makes effective use of this language. Metamodeling, the process of modeling a

methodology, enables building, understanding, comparing, and evaluating methodologies.

The metamodeling process produces a metamodel, i.e., a model of the methodology

(metamodel site, 2003). We refer to a methodology that can model itself as a reflective

methodology, and to metamodeling of a reflective methodology as reflective metamodeling.

 2

In other words, a reflective metamodel is defined exclusively in terms of the modeled

methodology. A reflective methodology is especially powerful since it is self-contained, so it

does not require auxiliary means or external tools to model itself. Object-Process

Methodology (OPM), which is a holistic system modeling, development and evolution

approach that combines object-oriented notations with process-oriented concepts, is a

reflective methodology.

As noted, metamodels have become important means for comparing and evaluating

methodologies and their supporting CASE tools. By and large, metamodels are structure- or

object-oriented, and hence pertain only to the static elements and relations of the

methodology. They therefore do not include the procedural parts of the methodology (also

known as "the software process"). Rather, these are usually described loosely and informally

in some natural language, most often English. The main reason for this omission of the

methodology's "process" part is the lack of expressive power of the methodology to

seamlessly and straightforwardly describe not only objects and structure but also processes

and behavior.

Object-Process Methodology (OPM) overcomes this shortcoming by treating objects and

processes as two equally important entities rather than viewing object classes necessarily as

superiors to and owners of processes. Through the bimodal OPM model presentation of

Object-Process Diagrams (OPDs) and Object-Process Language (OPL) sentences, this

chapter presents the reflective metamodel of the language and notation parts of OPM, namely

its semantics and syntax. The other part of the reflective OPM metamodel, which specifies

OPM-based system development and evolution processes, can be found in (Dori 2002, pp.

289-309; Dori and Reinhartz-Berger, 2003). A major significance of this work is that it lays

out a comprehensive, generic, and formal definition of OPM that enables domain-

independent modeling of complex systems, in which structure and behavior are intertwined

 3

and hard to separate. Indeed, real-life systems of interest can almost always be characterized

as such.

The chapter is structured as follows. First, the main metamodeling concepts are defined and

existing metamodeling approaches are reviewed. Then, the main concepts of OPM are

introduced and exemplified through a business enterprise model that handles customer orders

and retailer requests. The main part of the chapter is the OPM reflective metamodel,

including all its elements, entities, and structural, procedural, and event links. Finally, the

contribution of OPM as a universal business modeling methodology is summarized,

emphasizing its role in defining new methodologies.

REFLECTIVE METHODOLOGIES AND REFLECTIVE METAMODELIN G

System analysis and design activities can be divided into three types with increasing

abstraction levels: real world, model, and metamodel (Van Gigch, 1991). The real world is

what system analysts perceive as reality or what system architects wish to create as reality. A

model is an abstraction of this perceived or contemplated reality that enables its expression

using some approach, language, or methodology. A metamodel is a model of a model, or,

more accurately, a model of the modeling methodology (metamodel site, 2003). Metamodels

help understand the deep semantics of a methodology as well as relationships among

concepts in different languages or methods. They can therefore serve as devices for methods

development, also referred to as methods engineering (Nuseibeh et al., 1996; Rossi, et al.,

2000), and as conceptual schemas for repositories of software engineering and CASE tools.

Metamodeling is the process that creates metamodels. The level of abstraction at which

metamodeling is carried out is higher than the level at which modeling is normally done for

the purpose of generating a model of a system (Henderson-Sellers and Bulthuis, 1998).

The proliferation of object-oriented methods has given rise to a special type of

metamodeling—reflective metamodeling, i.e., modeling a methodology using its own means

 4

alone. While metamodeling is a formal definition of the methodology, reflective

metamodeling can serve as a common way to check and demonstrate the methodology’s

expressive power.

Existing object-oriented languages, notably the standard Unified Modeling Language (UML),

have partial reflective metamodels. The reflective UML metamodel in (Object Management

Group, 2001), for example, includes class diagrams; OCL (Object Constraint Language)

(Warmer and Kleppe, 1999) constraints, which are added on top of the UML graphics as a

textual means to express constraints; and natural language explanations for describing the

main elements in UML and the static relations among them. This metamodel is incomplete in

more than one way. First, UML is only a notation and not a methodology, so only the

language elements are metamodeled, but not any (object-oriented or other) development

process. Second, class diagrams are used to model all ten UML views (diagram types) and

the metamodel does not enforce complete consistency requirements among the various views

of a UML system model. Third, most of the metamodel (structural) constraints are expressed

in OCL, which is a programming-language-like add-on to UML.

The Meta Object Facility (MOF) (Object Management Group, 2003) is a standard metadata

architecture whose main theme is extensibility and support of metadata. MOF defines four

layers of metadata: information (i.e., real world concepts, labeled M0), model (M1),

metamodel (M2), and meta-metamodel (M3). The meta-metamodel layer describes the

structure and semantics of meta-metadata. In other words, it is an “abstract language” for

defining different kinds of metadata (e.g., meta-classes and meta-attributes).

The Meta Modeling Facility (MMF) (Clark et al., 2002) provides a modular and extensible

method for defining and using modeling languages. It comprises a static, object-oriented

language (MML) to write language definitions, a tool (MMT) to interpret those definitions,

 5

and a method (MMM), which provides guidelines and patterns encoded as packages that can

be specialized to particular language definitions.

MOF and MMF have been applied to metamodel UML. Since both are object-oriented, they

emphasize UML elements, while the procedural aspects are suppressed. Since OPM

combines the object- and process-oriented approaches in a single framework, it can specify

system structure and dynamics in a balanced way. In particular, metamodels expressed in

OPM capture both the language and the system development approach parts of the modeled

methodology.

OBJECT-PROCESS METHODOLOGY IN A NUTSHELL

Object-Process Methodology (OPM) (Dori, 2002) is a holistic approach to the modeling,

study, development, and evolution of systems. Structure and behavior coexist in the same

OPM model to enhance the comprehension of the system as a whole. Contrary to UML with

its ten diagram types, OPM shows the system’s structure and behavior in the same and single

diagram type, enabling direct expression of relations, interactions, and effects. This trait

reinforces the users' ability to construct, grasp, and comprehend the system as a whole and at

any level of detail. Moreover, Soffer et al. (2001) concluded that OPM is ontologically

complete according to the Bunge-Wand-Weber (BWW) evaluation framework (Wand and

Weber, 1993). The BWW framework aims to be a theoretical foundation for understanding

the modeling of information systems. Any modeling language (or grammar) must be able to

represent all things in the real world that might be of interest to users of information systems,

otherwise, the resultant model is incomplete (Rosemann and Green, 2002). Hence, OPM

completeness according to the BWW framework is indicative of OPM's expressive power.

 Appendix A lists the ontological constructs of information systems, their BWW explanations,

and their OPM representation as indicted in (Soffer et al. 2001).

 6

Due to its structure-behavior integration, OPM provides a solid basis for modeling complex

systems. Indeed, OPM has been extended to support the modeling of common types of

systems, including real-time systems (Peleg and Dori, 1999), ERP (Soffer et al., 2003), and

Web applications (Reinhartz-Berger et al., 2002). Three independent experiments showed

that OPM is more comprehensible than object-oriented techniques in modeling the dynamic

and reactive aspects of real time systems (Peleg and Dori, 2000), Web applications

(Reinhartz-Berger and Dori, 2004), and discrete event simulation systems.

OPM Concepts

The elements of OPM ontology are entities and links. Entities generalize things and states. A

thing is a generalization of an object and a process – the two basic building blocks of any

OPM-based system model. At any point in time, each object is at some state, and object

states are changed through the occurrence of processes. Analogously, links can also be

structural or procedural. Structural links express static, structural relations between pairs of

objects or processes. These relations hold for the system regardless of the time dimension.

Aggregation, generalization, characterization, and instantiation are the four fundamental

structural relations. In addition, general structural relations can take on any semantics, which

is expressed textually by their user-defined tags.

The behavior of a system is manifested in three major ways: (1) processes can transform

(generate, consume, or change) things, (2) things can enable processes without being

transformed by them, and (3) things can trigger events that (at least potentially, if some

conditions are met) invoke processes. Accordingly, a procedural link can be a transformation

link, an enabling link, or an event link.

The complexity of an OPM model is controlled through three scaling (refinement/abstraction)

processes: in-zooming/out-zooming, in which the entity being refined is shown enclosing its

constituent elements; unfolding/folding, in which the entity being refined is shown as the root

 7

of a directed graph; and state expressing/suppressing, which allows for showing or hiding the

possible states of an object. These mechanisms enable OPM to recursively specify and refine

the system under development to any desired level of detail without losing legibility and

comprehension of the complete system. Each time a diagram is about to get too cluttered, a

new diagram can be spawned. The new diagram is linked to and elaborates upon the ancestor

diagram.

The Bimodal Graphic-Text Representation of OPM

Two semantically equivalent modalities, one graphic and the other textual, jointly express the

same OPM model. A set of inter-related Object-Process Diagrams (OPDs), constitute the

graphical, visual OPM formalism. Each OPM element is denoted in an OPD by a dedicated

symbol, and the OPD syntax specifies correct and consistent ways by which entities can be

connected via structural and procedural links. The Object-Process Language (OPL), precisely

defined by a grammar, is the textual counterpart modality of the graphical OPD set. OPL is a

dual-purpose language, oriented towards humans as well as machines. Catering to human

needs, OPL is designed as a constrained subset of English, which serves domain experts and

system architects. All the stakeholders can use the OPL specification along with the

corresponding OPDs to jointly engage in analyzing and designing a system. Every OPD

construct is expressed by a semantically equivalent OPL sentence or phrase. Designed also

for machine interpretation through a well-defined set of production rules, OPL provides a

solid basis for automating the generation of the designed application. According to Mayer's

cognitive theory (2001), this dual representation of OPM increases the processing capability

of humans. Moreover, OPDs constitute a complete and consistent visual formalism that goes

hand in hand with the OPL in the following meaning: Anything that is expressed graphically

by an OPD is also expressed textually in the corresponding OPL paragraph, and vice versa.

 8

OPCAT (Dori et al., 2003), a Java-based Object-Process CASE Tool, automatically translates

each OPD into its equivalent OPL paragraph (collection of OPL sentences) and vice versa.

OPM CONCEPTS DEMONSTRATED BY AN INVENTORY SYSTEM MO DEL

Before presenting the OPM reflective metamodel, in this section we explain and demonstrate

OPM concepts through an OPM model of a simple business enterprise inventory system

which handles orders. This enterprise can get requests for products from individual customers

or from retailers. The OPM model of this enterprise, which includes information modeling as

well as business process specification, is presented in Figures 1-7 using both OPDs and their

corresponding OPL paragraphs. This dual representation increases the model clarity and

accessibility, as readers who are familiar with OPM and its graphical notation can use the

OPDs, while readers who are new with OPM will probably prefer to start with the OPL

paragraphs. Since the graphical and textual notations of OPM are equivalent, and, from a

cognitive viewpoint, complementary, the reader can choose the modality (text or graphics)

with which he/she is most comfortable and switch between the two at will. Furthermore, the

OPL paragraphs are self-documented and hence need no further explanations.

OPM Elements

As noted, OPM consists of two types of elements: entities and links. Entities are classified

into things and states. A thing is a generalization of an object and a process. Objects are

entities that exist, while processes are entities that transform things by generating,

consuming, or affecting them. A state is a situation at which an object exists. Therefore, a

state is not a stand-alone entity, but rather an entity that is "owned" by an object. At any

given point in time, the state-owning object is at one of its states. The status of an object, i.e.,

the current state of the object, is changed solely through an occurrence of a process. Objects

and processes are respectively denoted in an OPD by rectangles (as in class diagrams in UML

 9

and earlier notations) and ellipses (as in data-flow diagrams). Following Statecharts

(Harel, 1987) notation, the OPD symbol of a state is a rounded corner rectangle within the

rectangle of its owning object. In Figure 1, for example, Order , Receipt , Product Catalog ,

Customer , and Retailer are objects, while Ordering is a process. In Figure 2, created , paid ,

supplied , and completed are states of the Order Status attribute.

Product Catalog is environmental.
Receipt is physical.
Ordering lasts 1 minute to 5 minutes.
Ordering requires 2 Product Catalogs.
Ordering yields Order and Receipt.
Customer is environmental and physical.
Retailer is environmental and physical.
Either Retailer or Customer handles Ordering.

Figure 1. Top level, System Diagram (SD) of the ordering system

Order exhibits Order Number, Order Status, Order
Date, and Order Price, as well as Printing.
 Order Number is of type integer.
 Order Status can be created, which is the
 default, paid, supplied, or completed.
 Created is initial.
 Created lasts 2 seconds to 30 seconds.
 Paid can be advance paid, which is the
 default, or completely paid.
 Advance paid is initial.
 Completed is final.
 Order Date is of type date.
 Order Price is of type float.
Order consists of optional Order Lines.
 Order Line exhibits Product ID and Quantity.
Order is placed by either Person or Cooperation.
Supplied Order is an Order, the Order Status of
which is supplied.
Order 123 is an instance of Order, the Order Status
of which is paid.

Figure 2. SD1, in which Order is structurally unfolded

A link is an element that connects two entities to represent some semantic relation between

them. Links can be structural or procedural. A structural link is a binary relation between two

entities, which specifies a structural aspect of the modeled system, such as an aggregation-

participation (whole-part) or a generalization-specialization relation.

A procedural link connects an entity with a process to denote a dynamic, behavioral flow of

information, material, energy, or control. An event link is a specialization of a procedural link

 10

which models a significant happening in the system that takes place during a particular

moment and might trigger a process if preconditions are met.

Links are denoted in an OPD by lines with different types of arrowheads or triangles, as

summarized in Appendix B. In Figure 1, for example, Ordering , which is triggered (activated)

by either Customer or Retailer , uses Product Catalog as an input, and creates Order and

Receipt as outputs.

Any OPM element can be either systemic or environmental. A systemic element is internal to

the system and has to be completely specified, while an environmental element is external to

the system model and may therefore be specified only partially. The OPD symbol of an

environmental element differs from its systemic counterpart in that its borderline is dashed.

The Product Catalog in Figure 1, for example, is an environmental object; it is external to the

system but should be used as an unchangeable input for the Ordering process.

In an orthogonal fashion, an OPM element can also be either physical or informatical. A

physical element is tangible in the broad sense, while an informatical element relates to

information. A physical entity is symbolized in an OPD as a shadowed closed shape –

rectangle, ellipse, or rounded corner rectangle for a physical object, a physical process, or a

physical state, respectively. The Receipt in Figure 1, resulting from the Ordering process, is a

systemic and physical object, while the Customer and the Retailer are environmental and

physical objects.

OPM Things

As noted, a thing is a generalization of an object and a process. A thing can be simple or

complex. A thing is simple if it has no parts, features (attributes or operations), or

specializations, and is complex otherwise. An object is a thing that exists, at least potentially,

and represents a class of instances that have the same structure and can exhibit the same

behavior. The Order in Figure 2, for example, is a complex object which exhibits four simple

 11

attributes (each of which is an object in its own right): Order Number , which is of type

integer, Order Status , which is of an enumeration type, Order Date , which is of type date, and

Order Price , which is of type float.

A process is a class of occurrences (or instances) of a behavior pattern, which transforms at

least one thing. Transformation can be creation, consumption, or effect (state change) of a

thing (usually an object). To carry out the transformation, the process may need to be enabled

by one or more things of different types of classes, which are considered instruments

(enablers) for that process. An instrument is a non-human object which is not transformed by

the process it enables.

Order exhibits Order Status.
 Order Status can be paid, supplied, or completed.
 Paid is initial.
 Completed is final.
Product Catalog is environmental.
Receipt is physical.
Ordering lasts 1 minute to 5 minutes.
Ordering requires 2 Product Catalog.
Ordering zooms into Order Creation, Order Verification,
Retailer Order Handling, Customer Order Handling, and
Receipt Generating, as well as Product Request and Order
Type.
 Order Type can be customer or retailer.
 Order Creation yields Product Request.
 Following path individual, Order Creation yields
 customer Order Type.
 Following path retail, Order Creation yields retailer
 Order Type.
 Order Verification consumes Product Request.
 Order Verification yields Order.
 Retailer Order Handling occurs if Order Type is retailer.
 Retailer Order Handling affects Order.
 Customer Order Handling occurs if Order Type is
 customer.
 Customer Order Handling affects Order.
 Receipt Generating changes Order Status from either
 supplied or paid to completed.
 Receipt Generating yields Receipt.
Customer is environmental and physical.
Following path individual, Customer handles Order Creation.
Retailer is environmental and physical.
Following path retail, Retailer handles Order Creation.

Figure 3. SD2, in which Ordering is in-zoomed

Analogous to an object instance, a process instance is an occurrence (one-time execution) of

the specific process. The execution time of a process can be constrained by minimal and

maximal limits, implying that any process execution can only take a time interval that falls

within these time limits. The time limits appear in the OPD as [minimal time constraint,

 12

maximal time constraint] within the ellipse representing the process. For example, the

specification of the minimal and maximal time limits of the Ordering process in Figure 1 and

 Figure 3 implies that it must take at least 1 minute and at most 5 minutes. The corresponding

OPL sentence is “Ordering lasts 1 minute to 5 minutes.”

Following the UML notation of classes and objects, a thing instance is denoted in OPM by a

rectangle or an ellipse within which the class name is written as “:ClassName ”. The identifier

of the instance can optionally precede the colon. The OPL syntax for an instance makes use

of the reserved word "the" in an instance phrase, which is “The ClassName InstanceName ”.

For example, suppose in Figure 3 we replace Retailer by Storex , an instance of Retailer . In the

object instance box in the OPD we would write “Storex: Retailer ”, and instead of the OPL

sentence “Following path retail , Retailer handles Order Creation .” we would write “Following

path retail , the Retailer Storex handles Order Creation. ” If the instance identifier is not

explicitly specified, the OPL instance phrase would be “The ClassName instance.” In our

example the sentence would be “The Retailer instance handles Order Creation. ”

A process can be atomic, sequential, or parallel. An atomic process is a lowest-level,

elementary action which is not divided into sub-processes, while sequential and parallel

processes are refined (usually through in-zooming) into several sequential or parallel sub-

processes. The time line in an OPD flows from the top of the diagram downwards. Hence, the

vertical axis within an in-zoomed process defines the execution order: The sub-processes of a

sequential process are depicted in the in-zoomed frame of the process stacked on top of each

other with the earlier process on top of a later one.

Analogously, sub-processes of a parallel process appear in the OPD side by side, at the same

height. In Figure 4 and Figure 5, Retailer Order Handling and Customer Order Handling are

respectively in-zoomed, to show their two sub-processes, Paying and Supplying . In the in-

zoomed version of Customer Order Handling (Figure 5), Paying and Supplying are executed

 13

in a serial order: First, the Customer pays and only afterwards Order is supplied. In the in-

zoomed version of Retailer Order Handling (Figure 4), on the other hand, Paying and

Supplying are executed independently and may occur in parallel.

Order exhibits Order Status.
 Order Status can be supplied or paid.
 Paid is initial.
Product Catalog is environmental.
Order Type can be customer or retailer.
Retailer Order Handling occurs if Order Type is retailer.
Retailer Order Handling requires 2 Product Catalogs.
Retailer Order Handling zooms into Paying and Supplying,
which are executed in parallel.
 Paying changes Order Status to paid.
 Supplying changes Order Status to supplied.

Figure 4. SD2.1, in which Retailer Order Handling is in-zoomed

The default execution order is the sequential one, so only the parallel execution order is

specified in OPL using the reserved phrase “which are executed in parallel”. For example, the

in-zooming sentence in Figure 4 is “Retailer Order Handling zooms into Paying and Supplying ,

which are executed in parallel.”

Order exhibits Order Status.
 Order Status can be created, which is the default,
 supplied, or paid.
 Created is initial.
 Created lasts 2 seconds to 30 seconds.
 Paid is initial.
Product Catalog is environmental.
Order Type can be customer or retailer.
Customer Order Handling occurs if Order Type is customer.
Customer Order Handling requires 2 Product Catalogs.
Customer Order Handling zooms into Paying and Supplying.
 Paying changes Order Status from created to paid.
 Supplying changes Order Status from paid to supplied.

Figure 5. SD2.2, in which Customer Order Handling is in-zoomed

OPM States

A state is a situation in which an object can be for some period of time. At any point in time

an object is in exactly one of its states. A state can be a value from a continuous or discrete

value range, or a finite enumerated set of named states. Order Status in Figure 2, for example,

has four possible, top-level states: created , paid , supplied , and completed .

 14

A state can be initial, final, or default. Both created and paid are initial states, as denoted by

the thick borderline rounded corner rectangle. This implies that Order Status can be generated

in either its created or paid states, but not at both, since at any point in time an object is in

exactly one of its states. If not otherwise specified, Order will be generated in its created state

as denoted by the default mark (the small downward diagonal arrow that points towards the

created state). The completed state is the final state of Order Status , as denoted in Figure 2 by

the double line rounded corner rectangle. When entering this final state, Order can be

consumed (i.e., destroyed or deleted). The reserved OPL phrases that describe initial, final,

and default states are "is initial", "is final", and "which is the default", respectively (see Figure 2).

Like process durations, state durations can also be limited on one or both sides. For example,

the created state of Order Status in Figure 2 has a minimal time limit of 2 seconds and a

maximal time limit of 30 seconds, implying that between 2 to 30 seconds must pass from the

moment Order Status enters its created state until it exits this state.

Product Catalog is environmental.
Order Status can be created, which is the default, or paid.
 Created is initial.
 Created lasts 2 seconds to 30 seconds.
 Paid is initial.
 Paid can be advance paid, which is the default, or
 completely paid.
 Advance paid is initial.
Paying requires 2 Product Catalogs.
Paying zooms into Advance Paying and Complete Paying.
 Advance Paying changes Order Status from created to
 advance paid.
 Complete Paying changes Order Status from advance
 paid to completely paid.

Figure 6. SD2.2.1, in which Paying of Customer Order Handling is in-zoomed

Like objects and processes, states can be simple or complex. Complex states recursively

contain nested states, and the inner composition of a complex state can be exposed by

zooming into it. In Figure 2, for example, in its paid state, Order Status can be at one of two

sub-states: advance paid , which is the default of a paid Order , or completely paid . The in-

zoomed diagram of Paying (of Customer Order Handling) in Figure 6 shows that Advance

 15

Paying first changes Order Status from created to advance paid , and then Balance Paying

changes Order Status from advance paid to completely paid .

OPM Links

Links are the "glue" that holds entities (processes and objects with their states) together and

enables the construction of system modules of ever growing complexity. OPM links are

classified into two types: structural links and procedural links, with the latter specializing into

enabling, transformation, and event links.

OPM Structural Links

A structural link denotes a structural, i.e., a static, time-independent relation between two

elements. It usually connects two objects, but it can also connect two processes. Structural

links further specialize into general (tagged) structural links, and four fundamental structural

links. A tagged structural link can be unidirectional, graphically symbolized by , or bi-

directional, graphically symbolized by . It is usually labeled by a textual forward tag (for

the unidirectional link) or a pair of forward and backward tags (for the bidirectional link).

These tags are set by the system architect to convey a meaningful relation between the two

linked entities. In Figure 2, for example, the two objects Order and Person are linked with a

general unidirectional, structural link tagged “is placed by ”, connecting an Order with the

Person who placed it. Similarly, Order and Cooperation are linked with a tagged

unidirectional, structural link that is also labeled “is placed by ”.

The four most prevalent and useful OPM structural relations are termed fundamental

structural relations and are assigned various triangular symbols placed along the line linking

the two things. These symbols are graphically more distinct and appealing to the eye than

their text tag counterparts. The fundamental structural links are:

 16

1. Aggregation-Participation denotes the fact that a thing aggregates (i.e., consists of, or

comprises) one or more (lower-level) things, each of which is a part of the whole. It is

denoted by , an equilateral triangle whose tip is linked to the whole and whose base is

linked to the parts. To achieve the same semantics, we could use "consists of " and "is part

of" as the forward and backward tags of a tagged bi-directional, structural link,

respectively, but, as noted, using the black triangle symbol helps distinguish this relation

from any other tagged structural relation (and the other three fundamental structural

relations). In Figure 2, Order consists of optional (0 or more) Order Lines , as the

multiplicity constraint * denotes.

2. Exhibition-Characterization denotes the fact that a link or a thing exhibits, or is

characterized by, another lower-level thing. The exhibition-characterization symbol is .

The exhibitor is linked to the tip of the triangle, while the features (which can be

attributes or operations) are connected to its base. In Figure 2, Order exhibits (i.e., is

characterized by) the attributes Order Number , Order Status , Order Date , and Order Price

and the operation Printing , while Order Line exhibits Product and Quantity .

3. Generalization-Specialization (Gen-Spec) is a fundamental structural relation between two

entities, denoting the fact that the specialized entities share common features, states, and

structural and procedural links with the generalizing entity. The symbol of the gen-spec

relation is , a blank triangle whose tip is linked to the generalizing entity and its base –

to the specialized entities. In Figure 2, Supplied Order defines a sub-class of Orders whose

status is supplied . Like Order , Supplied Order has its Order Number , Order Status (which

is always supplied), Order Date , Order Price , Order Lines , and an owning Person or

Cooperation . It can also execute the operation Printing .

4. Classification-Instantiation represents a fundamental structural relation between a class of

things and an instance of that class. This type of link is denoted by , a triangle

 17

enclosing a solid circle, the tip of which is linked to the class, while its base – to the

instances. Order 123 in Figure 2 is an instance of an Order whose status is paid .

Structural links of the same type can be connected by “OR” and “XOR” logical relations to

specify alternative structures. An “OR” relation is symbolized by a double dashed arc

connecting the relevant structural links, while a “XOR” relation is denoted by a single line,

dashed arc. In Figure 2, for example, an Order is placed by either a Person or Cooperation ,

but not by both. If there were no arcs in that specification, a specific Order would have an

owning Person and an owning Cooperation .

OPM Procedural Links

A procedural link represents a dynamic relation between a process and an entity. Procedural

links are divided into enabling links, transformation links, and event links. An instrument link

is an enabling link that connects a process with an enabler of that process. The enabler is an

entity that must be present in order for that process to occur, but it is not transformed as a

result of the process occurrence. The instrument link can originate from an object, a process,

or a state, denoting that the object existence, the process existence, or the object in the

specific state is the enabler, respectively. Graphically, an instrument link is symbolized by

 , while textually it is represented by the reserved word “requires”. In Figure 1, for

example, Product Catalog is required for the Ordering process. However, the occurrence of

Ordering does not affect Product Catalog in any way. Therefore, Product Catalog is an

instrument of the process Ordering . It is, however, possible that for another process, such as

Catalog Updating , Product Catalog would be an affectee, i.e., an object affected by Catalog

Updating . Hence, being an instrument for a certain process class can be though of as a “role”

of a thing class with respect to that particular process class.

A transformation link denotes that a thing is transformed by the occurrence of a process.

Transformation is a generalization of consumption, result, and effect. A consumption link is a

 18

transformation link that connects an entity to a process which consumes it. A consumption

link is denoted by from the consumed entity to the process, while the reserved word

“consumes” represents it in OPL. In Figure 3, for example, Product Request is an object that

is internal to Ordering (in object-oriented programming terms it can be thought of as a local

variable of the method Ordering) and hence it appears in the in-zoomed frame of Ordering .

Product Request is consumed by the process Order Verification . In other words, Product

Request , which had existed before an occurrence of Order Verification , was consumed

(destroyed or destructed) by the execution of that process, and it no longer exists after Order

Verification is over. A consumption link originating from a state of an object means that the

process consumes that object only when the object is in that specific state. The corresponding

state-specified consumption OPL sentence is “Process consumes state Object. ”

A result link is a transformation link that denotes a creation of a process, an object, or an

object at a specific state. It is symbolized in an OPD by from the process to the resultant

entity, while the reserved word “yields” denotes it in OPL. In Figure 3, for example, Order

Verification , which consumed Product Request , creates an Order . The Order had not existed

before the beginning of Order Verification . Rather, it was created during this execution, and it

exists as soon as Order Verification is finished.

Since a process is a pattern of behavior or execution, it is also possible for a process to

generate or consume not just an object but also a process (e.g., when a process generates a

computer program that represents a process). To avoid confusion, the arrowhead pointing at

the consuming process is , namely solid (black) rather than blank. Hence,

means that the right process consumes the left one, while means that the right

process yields the left one.

An effect link connects a process with a thing that is affected, i.e., undergoes a change, during

that process. The effect link, denoted in an OPD by where the black arrowhead pointes

 19

towards the process and the blank arrowhead points towards the affectee (the affected thing),

means that the affectee of the process had existed before the process occurred and it

continues to exist after the process was finished, but at least one of its states or features has

changed.

OPL uses the reserved word “affects” to represent effect links. In Figure 3, for example,

Retailer Order Handling and Customer Order Handling affect Order . Figure 4 refines this effect

(state change) by explicitly showing that Paying of Retailer Order Handling changes Order

Status from any state to paid and Supplying changes Order Status from any state to supplied .

 Figure 5 specifies that Paying of Customer Order Handling changes Order Status from created

to paid , while Supplying of Customer Order Handling changes Order Status from paid to

supplied . These refinements are made possible due to the ability to split an effect link into an

input (state consumption) link and an output (state result) link. Overall, the meaning of input

and output links can be though of as “the process consumes the input state and yields the

output state”. However, the object as a whole is neither consumed nor generated – it merely

changes its state (or its value). Suppressing the object’s states is an abstraction that hides the

states, while also joining the input and output links to an effect link.

Procedural links can have multiplicity constraints like their structural counterparts. For

example, in Figure 1, Ordering requires 2 Product Catalogs while affecting one Order (the

default, when no multiplicity constraint is indicated) and yielding one Receipt . Like structural

links, procedural links of the same type can be grouped by “OR” and “XOR” connectors to

denote different possible instruments, consumees, resultees, and/or affectees of the same

process. In Figure 3, for example, Receipt Generating can change Order Status from either

paid or supplied to completed .

A procedural link may have one or more path labels. A path label is a character string label

on a procedural link that removes the ambiguity arising from multiple procedural links

 20

outgoing from the same entity. When procedural links that originate from an entity are

labeled, the one that must be followed is the one whose label is identical with the label of the

procedural link through which that entity was reached. The path labels in Figure 3, for

example, specify two possible scenarios of Order Creation . Symbolized by the path label

individual , this process occurs at the Customer request and it creates a temporary Order Type

object at state customer . Symbolized by the path label retail , the process occurs at the Retailer

request and it creates the temporary Order Type object in its retailer state. The Product

Request is generated in both scenarios. The Customer Order Handling and Retailer Order

Handling processes occur according to the Order Type , as the conditional enabling links (the

instrument links with the letter ‘c’ inside them) denote. A conditional enabling link specifies

a branching control construct. If these links were replaced by regular enabling (i.e.,

instrument) links, the semantics would be “wait until Order Type is in its retailer state and

then execute Retailer Order Handling . Afterwards, wait until Order Type is in its customer

state and then execute Customer Order Handling .”

Any type of procedural link (except for the result link) can be made conditional. Graphically,

this is done by adding the letter ‘c’ to the link symbol, as shown in Appendix B. In OPL, a

conditional procedural link is specified by two sentences: one for its procedural aspect (e.g.,

an enabling sentence: “Process requires Object. ”) and the other is a condition sentence. The

two possible condition sentences are a thing condition sentence: “Process occurs if Thing

exists.” and a state condition sentence: “Process occurs if Object is state. ”

OPM Event Links

An event is a significant happening in the system that takes place during a particular moment

in the system’s lifecycle, and it often triggers some process in the system. An event is

represented by an event link, which is a procedural link that connects a source entity with a

destination process. Following the Event-Condition-Action paradigm, the semantics of an

 21

event link is that the source entity attempts to trigger the destination process. The process

does not start unless the event link is enabled, i.e., the event occurs, and all the process’ pre-

conditions, represented by the regular (conditional or non-conditional) procedural links, are

satisfied.

Order exhibits Order Status, as well as Timeout Reporting,
Printing, Log Recording, and Archive Updating.
 Order Status can be created, which is the default,
 paid, supplied, or completed.
 Created is initial.
 Created lasts 2 seconds to 30 seconds.
 Paid is initial.
 Paid can be advance paid, which is the default,
 or completely paid.
 Advance paid is initial.
 Completed is final.
 Order Status triggers Log Recording.
 Order Status triggers Archive Updating when it enters
 completed, with a reaction time of 2 seconds to 5
 minutes. This link triggers Timeout Reporting when
 its reaction time lasts more than 5 minutes.
 Order Status triggers Timeout Reporting when
 created lasts more than 30 seconds.
 Timeout Reporting yields Timeout Message.
 Printing invokes Log Recording when it ends.
 Log Recording requires Order Status.
 Log Recording yields Log Record.
 Archive Updating requires completed Order Status.
 Archive Updating affects Archive.

Figure 7. SD3, in which Order is unfolded, showing its operations and event triggers

There are five types of event links:

1. Agent Link – An agent is an intelligent object, a human or a group of humans, such

as a department in an organization, who initiates a process by supplying an input

signal (e.g., pushing a button or operating a machine) or supplying control data. An

agent link is an event link which connects an agent with the process it triggers. The

Ordering process in Figure 1 starts only when one of its agents, the physical and

environmental (external) Customer or Retailer , enables its occurrence. The OPD

symbol of an agent link is from the agent to the triggered process. In the OPL

paragraph, this link is represented by the reserved word “handles”.

2. State Change Event Links – The fact that an object is at some state is a possible

trigger for an event. In a state change event, the actual event can happen at any

point in time between entrance to the state and exit from it. A state change event

 22

link connects an object state with the process it triggers when entering or exiting

the state. An enabling state change link is symbolized by e , while a consumption

state change link – by e .

A state change event has a timing attribute that determines at what point in time the

event occurs along the stay of the object at the state. The possible values of the

timing attribute are any, entrance, exit, and switch. The any state change event is an

event that can occur at any point in time during the stay of the object at the state.

The state entrance event occurs upon the object entering the state, while the state

exit event means that the event occurs upon the object exiting (leaving) the state.

The state switch event means that the event occurs upon the object either entering

the state or exiting it. The timing of the event is denoted graphically by the timing

bar – a small bar perpendicular to the event link, whose location along the link

from the triggering state to the triggered process symbolizes the point in time at

which the event occurs. Thus, an enabling state entrance event link is symbolized

by e , while a consumption state entrance event link is symbolized by
e . An

enabling state exit event link is symbolized by e and a consumption state exit

event link is symbolized by
e . Timing bars at both ends of the link denote a

switch (entrance or exit) state event link, while no bar at all means a state change

event link, where the event can take place at any point in time during the object’s

stay at the state.

In OPL, a triggering sentence is added to the OPL sentence representing the

procedural aspect of the link. Archive Updating in Figure 7, for example, is

triggered whenever Order Status enters its completed state. Two OPL sentences

describe this link: the enabling sentence “Archive Updating requires completed Order

Status. ” and the triggering sentence “Order Status triggers Archive Updating when it

 23

enters completed. ” For a state exit event link, the OPL sentence would be “Order

Status triggers Archive Updating when it exits completed. ” For a state change event

link which does not specify whether the event occurs upon entry to or exit from the

state, the corresponding sentence would be “Order Status triggers Archive Updating

when it is completed. ” For a state switch event link, which specifies that the event

occurs either upon entry to or upon exit from the state, the corresponding sentence

would be “Order Status triggers Archive Updating when it either enters or exits

completed. ”

3. General Event Links – A general event can be an external stimulus, a change in an

object state or value, etc. The source of a general event link is a thing (object or

process). In Figure 7, for example, a general event link specifies a requirement that

the Log Recording process is triggered any time Order Status changes its state. This

single link could be replaced by five state entrance event links from each one of the

bottom level states of Order Status , but the notation in Figure 7 is more compact.

The Log Recording process does not change Order Status , as the enabling aspect

(the circle) of the event link, e , denotes. A general event link can also be of type

consumption, symbolized by
e , or effect, symbolized by

e , denoting that

the source object or process is respectively consumed or affected by the triggered

process. The OPL sentence that specifies the triggering aspect of a general event

link is "Thing triggers Object. " (for example, "Order Status triggers Log Recording. ").

4. Invocation Link – An invocation link is a time-delimited event link between two

processes – an invoking process and an invoked one. As noted, the vertical axis in

an OPD denotes the time line within an in-zoomed process. The invocation link is

used when this default process sequencing needs to be overridden, as in loops or

jumping instructions. Using the timing bar symbol, an invocation link can trigger

 24

the invoked process when the invoking process starts, denoted by , ends,

denoted by , starts or ends, represented by , or at any time during its

execution, represented by . Figure 7 specifies that Log Recording is triggered

any time Printing terminates. All the possible OPL invocation sentences are

specified in Table 5 in Appendix B.

5. Timeout Event Link – A timeout event link is a time-delimited link that connects a

timed element, which can be a process, a state, or an event link, with a process

which is triggered when the element violates its time constraints. The timed

element is constrained by minimal and/or maximal time limits. These constraints

limit process execution, state duration, or the reaction time between triggering a

process by an event link and the actual beginning of the triggered process. The

timing bar denotes whether reference is made to the violation minimal, maximal, or

either one of the two time constraints. When the timed element (timed process,

timed state, or timed event link) violates its minimal time constraint, the minimal

timeout event link, denoted by , is followed. When the element violates its

maximal time constraint, the maximal timeout event link, denoted by , is

followed. The symbol represents a timeout event link which is followed

whenever an extreme time constraints is violated, while represents an

unspecified timeout violation event. The square head of the timeout event link

points towards the triggered process. The created state of Order Status in Figure 7,

for example, is specified to last 2 to 30 seconds. If it lasts more than 30 seconds, it

triggers the Timeout Reporting process, announcing the occurrence of a timeout

error. All the possible OPL timeout sentences are specified in Table 5 in Appendix

B.

 25

As noted, an event link can have minimal and maximal reaction timeout

constraints: if the triggered process does not start within the interval [minimal time

constraint, maximal time constraint] after a stimulus occurred, a timeout event

occurs. In Figure 7, for example, Archive Updating should be triggered within 2

seconds to 5 minutes after Order Status enters its completed state. If Archive

Updating is not triggered within 5 minutes from that event, Timeout Reporting is

triggered, announcing the reaction timeout error.

OPM REFLECTIVE METAMODEL

Up until now we have presented OPM in a rather informal way and accompanied the

introduction with a running example. We devote the second part of this chapter to a formal

reflective model of OPM. OPM is itself a complex system that combines language constructs

and an approach to use that language. As such, it is amenable to modeling with any modeling

language that is sufficiently expressive. In particular, it can be modeled in terms of OPM

itself, yielding the OPM reflective metamodel. The rest of this chapter presents the language

and notation parts of the OPM metamodel. As noted, the development part of OPM is the

focus of (Dori and Reinhartz-Berger, 2003) and, hence, is not described here.

The Top Level Specification

The System Diagram (SD), which is the top-level, most abstract specification of the OPM

metamodel, is presented in Figure 8. SD contains OPM and its features, which are the

attributes Language and Notation , and the operation System Developing .

System Developing , which represents the entire OPM-based set of processes, is handled by

the User , who is the agent of System Developing . This User can be the system architect,

developer, or any other stakeholder who uses OPM to architect, develop, and evolve a

System , as well as a team consisting of these stakeholders. The System Developing process

 26

requires OPM’s Language and Notation as instruments (unchangeable inputs) to create a new

System .

OPM exhibits Language and Notation, as well
as System Developing.

 Notation represents Language.
System Developing requires Language
and Notation.
System Developing yields System.

User is environmental and physical.
User handles System Developing.

Figure 8. SD, the top level specification, of the OPM reflective metamodel

OPM's Language encompasses OPM elements, their features, and the structural and

procedural links among them, but it does not specify anything about the symbols used to

denote them. The Notation represents the Language both visually, through interconnected

OPD symbols, and textually, through OPL paragraphs and sentences.

Language consists of Elements.
Notation exhibits Modality.
 Modality can be graphical or textual.
Notation represents Language.
OPD Symbol is a Notation, the Modality of which is
graphical.
OPD Symbol graphically represents an Element.
OPL Sentence is a Notation, the Modality of which is
textual.
OPL Sentence consists of at least one OPL Phrase.
 OPL Phrase consists of optional OPL Phrases and
 optional Atomic OPL Phrases.
 Atomic OPL Phrase textually represents an
 Element.
OPL Sentence textually represents at least one
Element.

Figure 9. SD1, in which OPM Notation is unfolded

Unfolding Notation , SD1 (shown in Figure 9) exposes the detailed relationships between

Language and Notation . Notation is characterized by Modality , which has two possible states:

graphical and textual . An OPD Symbol is a Notation the Modality of which is graphical , while

an OPL Sentence is a Notation the Modality of which is textual . An OPD Symbol graphically

represents an OPM Element , the building blocks of the Language , while an OPL Sentence

 27

textually represents several Elements . An OPL Sentence may consist of several OPL Phrases ,

each of which can be an Atomic OPL Phrase or a complex OPL Phrase , i.e., one that consists

of other OPL Phrases . An Atomic OPL Phrase textually represents a single OPM Element .

Element Metamodel

 Figure 10 shows the third OPD of the OPM metamodel, labeled SD2, in which Language is

unfolded. It specifies that Language consists of Entities and Links , each of which is an

Element . An Entity , which exhibits (i.e., is characterized by) a Name, specializes into a Thing

and a State . A Thing further specializes into an Object and a Process . The structural relation

between an Object and a State represents that an Object owns some States , while a State

specifies the status of an Object .

A Link exhibits Homogeneity , which is homogeneous for a Structural Link (that usually

connects two Objects or two Processes) and non-homogeneous for a Procedural Link that

usually connects an Object and a Process . The various types of links override this

Homogeneity attribute when required.

Each Element is characterized by three orthogonal attributes:

(1) Affiliation , which can be systemic (the default) or environmental . An environmental

Element is an Element , the Affiliation of which is environmental . An environmental

Element is external to the system or only partially specified, while a systemic

Element is internal to the system and completely specified.

(2) Essence , which can be informatical (the default) or physical . A physical Element

consists of matter and/or energy. It can be a physical Object (e.g., a Machine), a

physical Process (e.g., Manufacturing), a physical State (e.g., tested), or a physical

Link (e.g., a communication line between two remote computers). An informatical

Element relates to information.

 28

(3) Scope , which can be public (the default), protected , or private . As in programming

languages, the Scope of an Element can be private (i.e., it can be accessed only by

itself), protected (accessible only by itself and its sub-elements), or public (accessible

by any element in the system). Unlike the object-oriented paradigm, where a method

can affect or access only the attributes of the same class, the default Scope in OPM is

public , which implies that any OPM process can use or change all the objects in the

model. While seemingly violating the object-oriented encapsulation principle, this

provision increases the flexibility of modeling patterns of behavior as OPM processes

that involve and cut across several object classes.

Element exhibits Affiliation, Essence, and Scope.

Affiliation can be systemic, which is the default, or environmental.
Essence can be informatical, which is the default, or physical.
Scope can be public, which is the default, protected, or private

Language consists of Entity and Link.
Entity is an Element.
Entity exhibits Name.
Thing is an Entity.
Object is a Thing.
Object owns optional States.
Process is a Thing.
State is an Entity.
State specifies the status of an Object.
Link is an Element.
Link exhibits Homogeneity.
 Homogeneity can be homogeneous or non-homogeneous.
Structural Link is a Link, the Homogeneity of which is homogeneous.
Procedural Link is a Link, the Homogeneity of which is non-homogeneous.
Event Link is a Procedural Link.

Figure 10. SD2, in which Language of OPM is unfolded

 29

Thing Metamodel

Unfolding Thing of the OPM metamodel, SD2.1 (Figure 11) shows its Perseverance attribute,

which can be static or dynamic . An Object is a Thing with static Perseverance , while a

Process is a Thing with dynamic Perseverance . In addition to Perseverance , a Thing also

exhibits the Concreteness attribute, which determines whether the thing is a class (the

default) or an instance . The difference between an Object class and an Object instance is

similar to the difference between these concepts in the object-oriented approach. A Process

instance is an occurrence of the process class, which, as noted, is a behavior pattern that the

process instances follow. In programming terms, a Process instance can be thought of as an

executable version of code, which can be executed a specified finite number of times, while

a Process class is the complete code that can be (re)compiled and executed unboundedly.

An Object can optionally exhibit Type (e.g., integer , float , or string), whether it is Persistent

(i.e., stored in a database), whether it is Key, and optional Indices . Each Index is an ordered

tuple of Objects .

Timed Element exhibits Minimal Time Constraint, Maximal Time Constraint, and an optional Duration Distribution
Function.
 Minimal Time Constraint is 0 by default.

Maximal Time Constraint is infinity by default.
 Duration Distribution Function exhibits Function Name and optional Parameters.
Thing exhibits Concreteness and Perseverance.
 Concreteness can be class, which is the default, or instance.

Perseverance can be static or dynamic.
Object is a Thing, the Perseverance of which is static.
Object exhibits Persistent, Key, optional Indices, and an optional Type.

Persistent is of type Boolean.

 30

Key is of type Boolean.
Index relates to an ordered set of at least one Object.
Type can be integer, unsigned integer, short, long, float, double, boolean, char, string, date, or time.

Process is a Thing, the Perseverance of which is dynamic.
Process is a Timed Element.
Process exhibits Execution Order.
 Execution Order can be atomic, which is the default, sequential, or parallel.

Figure 11. SD2.1, in which Thing of OPM Language is unfolded

Process , which is a Thing with a dynamic Perseverance , is also a Timed Element and as such

it inherits Minimal Time Constraint (0 by default) and Maximal Time Constraint (infinity by

default). As noted, these constraints limit the Process execution time within the specific

bounds. Process also inherits from Timed Element a Duration Distribution Function , which is

characterized by Function Name and Parameters . This function specifies the distribution of

the process duration that determines how long a process execution lasts and it is most useful

for simulation purposes.

In addition, Process exhibits Execution Order , which can be atomic , sequential , or parallel .

Since a process can be either sequential or parallel (but not both), a zoomed-in process will

have sub-processes that are all depicted either stacked or in a row, but not as a mixture of

these two modes.

State Metamodel

A State , which describes a situation at which an Object can be, cannot stand alone, but is

rather “owned” by an object. At any given point in time, an Object can be at exactly one of

the States it owns, or in transition between two states. Like a Process , a State is a Timed

Element , and as such it exhibits Minimal Time Constraint and Maximal Time Constraint , i.e.,

the minimal and maximal bounds for a continuous stay of the owning Object in that State . As

a Timed Element , State also exhibits Duration Distribution Function for simulation purposes.

The OPD labeled SD2.2 (Figure 12) specifies that a State has three additional Boolean

attributes: Initial , Final , and Default . Initial determines whether the object can be initially (i.e.,

upon its creation) at this state. Final determines whether the object can be consumed

 31

(destroyed) when it is at that state. Default determines whether this state is the default state (or

value) of the owning object, i.e., the state into which the object enters when there is no

specified initial state or more than one initial state. The self aggregation attached to State

indicates that a state may recursively consist of lower-level States , which are nested sub-

states.

State is a Timed Element.
State exhibits Initial, Final, and Default.

Initial is of type Boolean and is false by default.
Final is of type Boolean and is false by default.
Default is of type Boolean and is false by default.

State consists of optional States.

Figure 12. SD2.2, in which State of OPM Language is unfolded

Link Metamodel

As SD2.3 (Figure 13) shows, a Link exhibits two link ends: Source End and Destination End .

Both are specializations of Link End , which is characterized by Participation Constraint (also

known as multiplicity). Participation Constraint defines the Minimal Cardinality (with 1 as its

default value) and the Maximal Cardinality (also 1 by default). These specify the minimal and

maximal number of instances that can be connected by the link at the corresponding (source

or destination) Link End . In addition a Link exhibits the Homogeneity attribute, which has two

states: homogeneous and non-homogeneous . A Link is homogeneous if both its Link Ends ,

i.e., its Source End and Destination End , are linked to Things whose Perseverance value are

the same. In other words, a homogeneous Link connects either two Objects or two Processes ,

while a non-homogeneous Link usually connects an Object to a Process . Structural Links ,

which denote static, non-temporal relations between the linked Entities , are usually

homogeneous Links . Procedural Links , which model the behavior of the system along time

 32

and represent flows of data, material, energy, or control between the linked entities, are non-

homogeneous Links by default.

Link End exhibits Participation Constraint.
 Participation Constraint exhibits Minimal
 Cardinality and Maximal Cardinality.
 Minimal Cardinality is 1 by default.
 Maximal Cardinality is 1 by default.
Link End is linked to an Element.
Link exhibits Source End, Destination End, and
Homogeneity.
 Source End is a Link End.
 Destination End is a Link End.
 Homogeneity can be homogeneous or non-
 homogeneous.
Structural Link is a Link, the Homogeneity of which is
homogeneous.
 2 Link Ends of Structural Link are either
 linked to 2 Objects or 2 Processes.
Procedural Link is a Link, the Homogeneity of which is
non-homogeneous.
 Source End of Procedural Link is linked to an
 Entity.
 Destination End of Procedural Link is linked
 to a Process.
Event Link is a Procedural Link.

Figure 13. SD2.3, in which Link of OPM Language is unfolded

Determining link attribute values

The values of the Essence , Affiliation , and Scope link attributes, inherited from Element , are

determined according to the corresponding values of the entities the link connects. If the

entities have different values, a conflict arises that mandates a decision process based on

three rules: the link essence, the link affiliation, and the link scope rules.

The link essence rule defines that the Essence value of a link is physical if the Essence of

the two Elements it connects is physical . Hence, a physical Link can connect only two

physical Elements , as described in Figure 14 by an OPM model.

Element exhibits Essence.
 Essence can be informatical, which is the
 default, or physical.
Physical Element is an Element, the Essence of which is
physical.
Physical Link is a Link, the Essence of which is
physical.
 Source End of Physical Link is linked to
 Physical Element.
 Destination End of Physical Link is linked to
 Physical Element.

Figure 14. SD2.3.1, in which the Link Essence rule is specified

 33

The link affiliation rule determines that the Affiliation value of a link is environmental if the

Affiliation of the two Elements it connects is environmental . Hence, an environmental Link can

connect only two environmental Elements , as specified in Figure 15.

Element exhibits Affiliation.
 Affiliation can be systemic, which is the
 default, or environmental.
Environmental Element is an Element, the Affiliation of
which is environmental.
Environmental Link is a Link, the Affiliation of which is
environmental.
 Source End of Environmental Link is linked
 to Environmental Element.
 Destination End of Environmental Link is
 linked to Environmental Element.

Figure 15. SD2.3.2, in which the Link Affiliation rule is specified

Source Element is an Element.
Destination Element is an Element.
Link exhibits Source End and Destination End, as well as Link
Scope Declaring.
 Source End is linked to Source Element.
 Destination End is linked to Destination Element.
 Following path a, Link Scope Declaring occurs if
 Scope of Source Element is private and Scope of
 Destination Element is private.
 Following path a, Link Scope Declaring yields private
 Scope of Link.
Following path b, Link Scope Declaring occurs if Scope of
Source Element is private and Scope of Destination Element is
protected.
Following path b, Link Scope Declaring yields protected Scope
of Link.
Following path c, Link Scope Declaring occurs if Scope of
Source Element is private and Scope of Destination Element is
public.
Following path c, Link Scope Declaring yields public Scope of
Link.

Following path d, Link Scope Declaring occurs if Scope of Source Element is protected and Scope of Destination Element
is private.
Following path d, Link Scope Declaring yields protected Scope of Link.
Following path e, Link Scope Declaring occurs if Scope of Source Element is protected and Scope of Destination Element
is protected.
Following path e, Link Scope Declaring yields protected Scope of Link.
Following path f, Link Scope Declaring occurs if Scope of Source Element is protected and Scope of Destination Element
is public.
Following path f, Link Scope Declaring yields public Scope of Link.
Following path g, Link Scope Declaring occurs if Scope of Source Element is public and Scope of Destination Element is
private.
Following path g, Link Scope Declaring yields public Scope of Link.
Following path h, Link Scope Declaring occurs if Scope of Source Element is public and Scope of Destination Element is
protected.
Following path h, Link Scope Declaring yields public Scope of Link.
Following path i, Link Scope Declaring occurs if Scope of Source Element is public and Scope of Destination Element is
public.
Following path i, Link Scope Declaring yields public Scope of Link.

Figure 16. SD2.3.3, in which the Link Scope is specified

The link scope rule determines the Scope value of a Link as the widest of the Scope values of

the two connected Elements , where public , protected , and private are the widest,

 34

intermediate, and most narrow Scope values, respectively. Figure 16 specifies a process, Link

Scope Declaring , that enforces this rule.

Structural Link Metamodel

SD2.4 (Figure 17) unfolds OPM Structural Links . A Structural Link is characterized by

Orderability , which can be ordered (e.g., an array) or unordered (e.g., a set) by default. An

ordered Structural Link adds the reserved label {ordered} next to the Structural Link symbol.

In Figure 11, for example, Object is characterized by optional Indices , each of which is an

ordered set of Objects .

SD2.4 also unfolds the two types of Structural Links : Tagged Structural Links and

Fundamental Structural Links . A Tagged Structural Link exhibits Forward Tag , whose default

value is the string “relates to”, and Directionality . A Bi-Directional Tagged Structural Link ,

which is a Tagged Structural Link whose Directionality is bi-directional , exhibits in addition

Backward Tag , whose default value is null , and the default value of its (inherited) Forward

Tag is “are equivalent”.

Fundamental Structural Links specialize into Aggregation-Participation Link , Exhibition-

Characterization Link , Generalization-Specialization Link , and Classification-Instantiation Link .

Structural Links of the same type can be connected by “OR” and/or “XOR” relations. This is

specified by the self tagged structural links labeled “is or-connected to ” and “is xor-

connected to ”, respectively.

SD2.4.1 (Figure 18), which unfolds the Fundamental Structural Links , specifies constraints on

the Elements that can be connected by this type of links. Being Structural Links , Fundamental

Structural Links connects two Objects or two Processes . There are two exceptions to this

simple rule. These exceptions, which override the Homogeneity attribute of Structural Links ,

are explicitly specified in SD2.4.1:

 35

Structural Link exhibits Orderability.
 Orderability can be unordered, which is the default, or ordered.
Tagged Structural Link is a Structural Link.
Tagged Structural Link exhibits Forward Tag and Directionality.
 Forward Tag is “relates to” by default.
 Directionality can be uni-directional or bi-directional.
Tagged Structural Link is xor-connected to optional Tagged Structural Links.
Tagged Structural Link is or-connected to optional Tagged Structural Links.
Bi-Directional Tagged Structural Link is a Tagged Structural Link, the Directionality of which is bi-directional.
Bi-Directional Tagged Structural Link exhibits Backward Tag.
 Backward Tag is null by default.
 Forward Tag of Bi-Directional Tagged Structural Link is “are equivalent” by default.
Fundamental Structural Link is a Structural Link.
Aggregation-Participation Link is a Fundamental Structural Link.
Aggregation-Participation Link is xor-connected to optional Aggregation-Participation Links.
Aggregation-Participation Link is or-connected to optional Aggregation-Participation Links.
Exhibition-Characterization Link is a Fundamental Structural Link.
Exhibition-Characterization Link is xor-connected to optional Exhibition-Characterization Links.
Exhibition-Characterization Link is or-connected to optional Exhibition-Characterization Links.
Generalization-Specialization Link is a Fundamental Structural Link.
Generalization-Specialization Link is xor-connected to optional Generalization-Specialization Links.
Generalization-Specialization Link is or-connected to optional Generalization-Specialization Links.
Classification-Initialization Link is a Fundamental Structural Link.
Classification-Initialization Link is xor-connected to optional Classification-Initialization Links.
Classification-Initialization Link is or-connected to optional Classification-Initialization Links.

Figure 17. SD2.4, in which Structural Link of OPM Language is unfolded

1. An Exhibition-Characterization Link connects a Thing or a Link (as its Source End) and

an Entity (as its Destination End). For example, the communication link between

remote computers, which is modeled as a Tagged Structural Link , can be characterized

by the object Transfer Rate and/or the process Encrypting.

2. A Generalization-Specialization Link can connect two States of different Objects to

represent state inheritance. In this type of link, which is called State Generalization-

 36

Specialization Link , the inherited state has at least the same structural and procedural

links as the inheriting state.

Aggregation-Participation Link is a Fundamental Structural Link.
Exhibition-Characterization Link is a Fundamental Structural Link.
 Source End of Exhibition-Characterization Link is linked to either Link or Thing.
 Destination End of Exhibition-Characterization Link is linked to Entit y.
Generalization-Specialization Link is a Fundamental Structural Link.
State Generalization-Specialization Link is a Generalization-Specialization Link.
 Source End of State Generalization-Specialization Link is linked to State.
 Destination End of State Generalization-Specialization Link is linked to State.
Classification-Instatiation Link is a Fundamental Structural Link.

Figure 18. SD2.4.1, in which Fundamental Structural Link of OPM Language is unfolded

 Table 1 summarizes the possible structural relations between OPM elements in a tabular way.

Table 1. Possible structural relations between OPM elements. S and D denote the link

source and destination, respectively. + denotes a legal link.

Tagged Structural Link /
Aggregation-Participation Link

Exhibition-Characterization Link

S

D

Object Process State Link S

D

Object Process State Link

Object + - - - Object + + - +

Process - + - - Process + + - +

State - - - - State + + - +

Link - - - - Link - - - -

Generalization-Specialization Link Classification-Instantiation Link

S

D

Object Process State Link S

D

Object Process State Link

Object + - - - Object + - - -

Process - + - - Process - + - -

State - - + - State - - - -

Link - - - - Link - - - -

 37

Procedural Link Metamodel

Any Procedural Link has a Process as its Destination End , while its Source End is connected

to an Entity . As shown in SD2.5 (Figure 19), a Procedural Link exhibits three attributes: Link

Type , Conditionality , and optional Path Labels . The Link Type of a Procedural Link

distinguishes primarily between enabling and transforming Procedural Links . Transforming

Procedural Links are further divided into affecting , consuming , and resulting Procedural

Links .

Procedural Link exhibits Link Type, Conditionality, and optional Path Labels.
 Link Type can be enabling or transforming.

 Transforming can be consuming, resulting, or affecting.
 Conditionality can be conditional or unconditional.
 Source End of Procedural Link is linked to Entity.
 Destination End of Procedural Link is linked to Process.
Instrument Link is a Procedural Link, the Link Type of which is enabling.
Instrument Link is xor-connected to optional Instrument Links.
Instrument Link is or-connected to optional Instrument Links.
Consumption Link is a Procedural Link, the Link Type of which is consuming.
Consumption Link is xor-connected to optional Consumption Links.
Consumption Link is or-connected to optional Consumption Links.
Result Link is a Procedural Link, the Link Type of which is resulting.
Result Link is xor-connected to optional Result Links.
Result Link is or-connected to optional Result Links.
Effect Link is a Procedural Link, the Link Type of which is affecting.
Effect Link is xor-connected to optional Effect Links.
Effect Link is or-connected to optional Effect Links.

Figure 19. SD2.5 , in which Procdural Link of OPM Language is unfolded

A conditional Procedural Link , i.e., a Procedural Link whose Conditionality is conditional ,

enables the Process execution only if the condition it symbolizes holds, else the destination

Process is skipped and the next process in turn is examined for possible execution. With the

 38

exception of Result Link , each type of procedural link can be either a conditional Procedural

Link or an unconditional Procedural Link . A Result Link cannot be a conditional Procedural

Link simply because the Entity which the Process generated upon its completion cannot be a

condition for the Process that generated it.

Like a Structural Link , a Procedural Link can be connected by “XOR” and “OR” relations to

other Procedural Links of the same type, as shown by the self tagged structural links labeled

“ is xor-connected to ” and “is or-connected to ” in SD2.5.

Event Link Metamodel

As noted, an Event Link , which is unfolded in SD2.6 (Figure 20), is a Timed Element . As such,

it inherits Minimal (reaction) Time Constraint , Maximal (reaction) Time Constraint , and

Duration Distribution Function as its attributes. The Duration Distribution Function of an Event

can be used for system simulation to define the distribution of the time that passes from the

event occurrence to the start of the corresponding triggered process.

SD2.6 also specifies the five types of Event Links : Agent Link ; State Change Event Link ,

which can be entrance State Change Event Link , exit State Change Event Link , switch State

Change Event Link , or any State Change Event Link ; General Event Link ; Invocation Link ,

which can be process start Invocation Link , process end Invocation Link , process border

Invocation Link , or any Invocation Link ; and Timeout Event Link , which can be minimum

Timeout Event Link , maximum Timeout Event Link , extreme Timeout Event Link , or any

Timeout Event Link .

An Event Link can be any Procedural Link , except for a Result Link , since the source Entity of

a Result Link is created during the Process and, hence, cannot trigger it. An Event Link cannot

be a conditional procedural link, since it triggers the process rather than just specifying an

execution requirement on it.

 39

Event Link is a Timed Element.
Timeout Event Link is an Event Link.
Timeout Event Link can be minimum, maximum, extreme, or any.

Source End of Timeout Event Link is linked to a Timed Element.
Timeout Event Link is xor-connected to optional Timeout Event Links.
Timeout Event Link is or-connected to optional Timeout Event Links.
Invocation Link is an Event Link.
Invocation Link can be process start, process end, process bordered, or any.

Source End of Invocation Link is linked to a Process.
Invocation Link is xor-connected to optional Invocation Links.
Invocation Link is or-connected to optional Invocation Links.
General Event Link is an Event Link.

Source End of General Event Link is linked to a Thing.
General Event Link is xor-connected to optional General Event Links.
General Event Link is or-connected to optional General Event Links.
State Change Event Link is an Event Link.
State Change Event Link can be entrance, exit, switch, or any.

Source End of State Change Event Link is linked to a State.
State Change Event Link is xor-connected to optional State Event Links.
State Change Event Link is or-connected to optional State Event Links.
Agent Link is an Event Link.

Source End of Agent Link is linked to an Object.
Agent Link is xor-connected to optional Agent Links.
Agent Link is or-connected to optional Agent Links.

Figure 20. SD2.6, in which Event Link of OPM Language is unfolded

 40

COMPLEXITY MANAGEMENT IN OPM

As noted, OPM is a comprehensive systems evolution methodology. As such, it comprises

not only a modeling language but also an approach for developing and evolving systems.

Enabling both top-down and bottom-up development processes through its build-in

complexity management mechanisms, OPM supports middle-out development. Complexity

management aims at balancing the tradeoff between two conflicting requirements:

completeness and clarity. Completeness requires that the system details be stipulated to the

fullest extent possible, while the need for clarity imposes an upper limit on the level of

complexity and does not allow for an OPD that is too cluttered or overloaded with entities

and links among them. The seamless, recursive, and selective OPM scaling, i.e., refinement-

abstraction, enables presenting the system at various detail levels without losing the “big

picture” and the comprehension of the system as a whole.

Refinement-Abstraction Mechanisms

OPM features three built-in refinement-abstraction mechanisms, which are in-zooming and

out-zooming, unfolding and folding, and state-expressing and state-suppressing.

In-zooming and out-zooming are a pair of refinement and abstraction mechanisms,

respectively, which can be applied to all the three entity types: objects, processes, and states.

In-zooming of (i.e., zooming into) an entity decreases the distance of viewing it, such that

lower-level elements enclosed within the entity become visible. Conversely, out-zooming

(i.e., zooming out) of a refined entity increases the distance of viewing it, such that all the

lower-level elements that are enclosed within it become invisible. Figures 1, 3, 4, 5, and 6 are

diagrams which result from in-zooming of different processes in the inventory system.

Unfolding/folding is a refinement/abstraction mechanism, which can be applied to things –

objects or processes. Unfolding reveals a set of lower-level entities that are hierarchically

 41

below a relatively higher-level thing. The hierarchy is with respect to one or more structural

links. The result of unfolding is a graph the root of which is the thing being unfolded. Linked

to the graph are the things that are exposed as a result of the unfolding. Conversely, folding is

applied to a tree from which a set of unfolded entities is removed, leaving just the root.

Figures 2 and 7 result from unfolding the order object of the inventory system.

Unfolding/folding can be applied fully or partially to any subset of descendants (parts,

specializations, features, or instances) of a thing (object or process).

State expressing is a refinement mechanism applied to objects which reveals a set of states

inside an object. State Suppressing is the abstraction mechanism which conceals a set of

states inside an object. For example, the order status in the inventory system is fully state-

expressed in Figures 2 and 7 and only partially state-expressed in Figures 3, 4, 5, and 6. This

object is state-suppressed in Figure 1.

Two entities in an OPD can be connected by at most one procedural link. While abstracting, a

conflict between two competing links arises when an entity in the OPD is abstracted. A

typical example is a process with two sub-processes, each of which is linked to the same

object by a different procedural link, e.g. an instrument and a consumption link. When this

process is out-zoomed, only one of these links needs to remain, and the question is which one

prevails. The link needs to be at least as abstract as the more abstract link of the two

competing links, so it may be one of these two procedural links or a third link which is more

abstract than either one of them. In Figure 3, for example, the object Order is connected to the

three sub-processes of Ordering through three links: a result link (to Order Verification) and

two effect links (to Customer Order Handling and to Retailer Order Handling). When out-

zooming of Ordering , the result link and the two effect links are replaced by a single result

link, as shown in Figure 1. Figure 3 shows that Order Status , which is an Order attribute, is

connected to Receipt Generating by two input (consumption) links and one output (result)

 42

link. After suppressing the states of Order Status , this object remains connected to Receipt

Generating with an effect link. Appendix C summarizes the abstraction order of procedural

link by a table. This table defines for each two procedural links a third procedural link which

replaces the two when abstracting (folding, out-zooming, or state-suppressing) the two

procedural links. This table is the basis for defining the procedural aspects of OPM, which

are also essential parts of the OPM reflective metamodel (Dori 2002, pp. 289-309; Dori and

Reinhartz-Berger, 2003).

SUMMARY

A comprehensive reflective metamodel of OPM has been presented, using a bimodal

representation of Object-Process Diagrams and Object-Process Language paragraphs.

Although there seems to be a consensus among object-oriented languages that a system

model should describe not just the structural aspect of a methodology but also its behavioral

aspect (e.g., UML interaction diagrams), both the semantics and notations of system

dynamics are confusing and incomplete. Furthermore, the metamodel of the UML industry

standard depicts only the language part, leaving the (software or any other) system

development processes informally as a “Unified Process.” In sharp contrast to this, OPM,

being an object-process approach, enables reflective metamodeling of the complete

methodology, including its language (with both its conceptual-semantic and notational-

syntactic aspects) and the OPM-based system development process. This ability to create a

reflective metamodel of OPM is indicative of OPM's expressive power, which goes hand in

hand with OPM's ontological completeness according to the Bunge-Wand-Weber (BWW)

evaluation framework (Soffer et al., 2001).

Besides being the source for OPM’s definition, the reflective metamodel of OPM can serve

other important goals. It can be used as a basis for a theoretical comparison between OPM

and various object-oriented methods. COMMA, the Common Object-oriented Methodology

 43

Metamodel Architecture, project (Henderson-Sellers and Bulthuis, 1998) used metamodeling

to construct metamodels of popular object-oriented methodologies and identify a core that

was later used as a basis for OPEN, Object Process, Environment, and Notation (OPEN site,

2003). The OPM metamodel can be compared to these metamodels and an automatic

transformation generator can be made between popular object-oriented methodologies, such

as UML, and OPM. Indeed, OPCAT, Object-Process CASE Tool, (Dori et al., 2003) can

automatically generate a set of UML views, including use case, class, sequence, activity,

Statecharts, and deployment diagrams, from the single OPM model.

The reflective OPM metamodel helps also define an implementation generator, which

automatically transforms the OPM model resulting from the system’s analysis and design into

a database scheme and executable code. The benefits of this implementation generation

include increasing productivity and quality; enabling mechanical and repetitive operations to

be done quickly, reliably and uniformly; and relieving designers from mundane tasks so they

can focus on creative tasks that require human intelligence. OPM-GCG (Reinhartz-Berger

and Dori, 2004), the generic code generator of OPM, handles dynamic repositories of

translation rules from an XML syntax of Object-Process Language to various target

programming languages. These translation rules are defined in a separate offline tool and are

used by the implementation generator at will. Being based on OPM, OPM-GCG enables the

generation of potentially complete application logic rather than just skeleton code.

The different OPM system development and evolution processes, as well as the refinement

and abstraction mechanisms, provide a theoretical foundation for improving OPCAT to make

it a fully Integrated System Engineering Environment (I SEE). OPCAT already supports

system simulation during the design phase, OPD generation from an OPL script, OPL

generation from an OPD-set, and implementation generation.

 44

REFERENCES

Clark, T., Evans, A., & Kent, S. (2002). Engineering Modeling Languages: a Precise Meta-

Modeling Approach. 5th International Conference on Fundamental Approaches to Software

Engineering (FASE’2002), 159-173.

Dori, D. (2002). Object-Process Methodology - A Holistic Systems Paradigm. Springer

Verlag Press.

Dori, D., & Reinhartz-Berger, I. (2003). Reflective Metamodel of OPM – An OPM-Based

System Development Process. Proceedings of the 22nd International Conference on

Conceptual Modeling (ER’2003), Lecture Notes in Computer Science 2813, pp. 105-117.

Dori, D., Reinhartz-Berger, I., & Sturm A. (2003). OPCAT – A Bimodal Case Tool for

Object-Process Based System Development. Proceedings IEEE/ACM 5th International

Conference on Enterprise Information Systems (ICEIS 2003), 286-291.

 Download site of the software: http://www.objectprocess.org/

Harel, D. (1987). Statecharts: a Visual Formalism for Complex Systems, Science of

Computer Programming, 8, 231-274.

Henderson-Sellers, B., & Bulthuis, A. (1998). Object-Oriented Metamethods. New York:

Springer Verlag Press.

Mayer, R.E. (2001). Multimedia Learning. NewYork: Cambridge University Press.

Metamodel site. (2003). What is metamodelling, and what is a metamodel good for?

http://www.metamodel.com/

Nuseibeh, B., Finkelstein, A., & Kramer, J. (1996). Method engineering for multi-perspective

software development. Information and Software Technology journal, 38 (4), 267-272.

Object Management Group (OMG). (2001) UML 1.4 - UML Semantics. OMG document

formal/01-09-73, http://cgi.omg.org/docs/formal/01-09-73.pdf

Object Management Group (OMG). (2003). Meta Object Facility (MOF) Specification. OMG

document formal/02-04-03, http://cgi.omg.org/docs/formal/02-04-03.pdf

OPEN web site. (2003). http://www.open.org.au/

Peleg, M., & Dori, D. (1999). Extending the Object-Process Methodology to Handle Real-

Time Systems, Journal of object-oriented programming, 11 (8), 53-58.

Peleg, M. & Dori, D. (2000). The Model Multiplicity Problem: Experimenting with Real-

Time Specification Methods. IEEE Transaction on Software Engineering, 26 (8), 742-759.

Reinhartz-Berger, I., & Dori, D. (2004). Object-Process Methodology (OPM) vs. UML: A

Code Generation Perspective. Accepted to the 9th CAiSE/IFIP8.1/EUNO International

 45

Workshop on Evaluation of Modeling Methods in Systems Analysis and Design

(EMMSAD’04).

Reinhartz-Berger, I., & Dori, D. (2004). OPM vs. UML – Experimenting Comprehension and

Construction of Web Application Models. Accepted to Emprical Software Engineering

journal.

Reinhartz-Berger, I., Dori, D., & Katz S. (2002). OPM/Web - Object-Process Methodology

for Developing Web Applications. Annals of Software Engineering – Special Issue on

Object-Oriented Web-based Software Engineering, 141–161.

Reinhartz-Berger, I., Dori, D., & Katz S. (2002). Open Reuse of Component Designs in

OPM/Web. Proceeding of Computer Software and Application Conference

(COMPSAC’2002), 19-24.

Rosemann, M., & Green, P. (2002). Developing a Meta Model for the Bunge-Wand-Weber

Ontological Constructs. Information Systems, 27, 75-91.

Rossi, M., Tolvanen, J.P., Ramesh, B., Lyytinen, K., & Kaipala, J. (2000). Method Rationale

in Method Engineering. Proceedings of the 33rd Hawaii International Conference on

System Sciences, http://www.computer.org/proceedings/hicss/0493/04932/04932036.pdf

Soffer, P., Golany, B., Dori, D., & Wand, Y. (2001). Modelling Off-the-Shelf Information

Systems Requirements: An Ontological Approach. Requirements Engineering, 6 (3), 183-

199.

Soffer, P., Golany, B., & Dori, D. (2003). ERP Modeling: A Comprehensive Approach.

Information Systems, 28(6), 673-690.

Van Gigch, J. P. (1991). System Design Modeling and Metamodeling. Kluwer Academic

Publishers.

Warmer, J. & Kleppe, A. (1999). The Object Constraint Language – Precise Modeling with

UML. Addison-Wesley.

Wand, Y. & Weber, R. (1993). On the Ontological Expressiveness of Information Systems

Analysis and Design Grammars. Journal of Information Systems, 3, pp. 217-237.

 46

APPENDIX A. BWW ONTOLOGICAL CONSTRUCTS AND THEIR OP M

REPRESENTATION

Table 2. BWW ontological constructs and their mapping to OPM concepts

Ontological Construct BWW Explanation OPM Represent ation
Thing A thing is the elementary unit in the ontological

model. The real world is made up of things. A
composite thing may be made up of other things

An instance

Property Things possess properties. A property is modeled
via an attribute function that maps the thing into
some value

An attribute is an object related to another
object by a characterization link

Class A class is a set of things that possess common
properties

An object class

State The vector of values for all attribute functions of a
thing is the state of the thing

A state (separately modeled for each
attribute)

State law A state law restricts the values of the properties of a
thing to a subset defined by natural or human laws

A state law is a specification of the possible
states of an object, including distinction of
transient and persistent states

Event An event is a change of state of a thing, effected via
a transformation (see below)

The event of changing state A to state B is
represented by the sequence <State A →
consumption link → process → result link →
state B>

Transformation A transformation is a mapping from one state to
another one

A process (class)

Lawful transformation A lawful transformation defines which events in a
thing are lawful

A set of objects / states linked to a process
by a condition / event / effect / consumption /
instrument link. The process is linked to
another set of objects / states by an effect /
result link

External event An event that arises in a thing, subsystem or
system by virtue of the action of some thing in the
environment on the thing, subsystem or system

Object / state → event link → process

Internal event An event that arises in a thing, subsystem or
system by virtue of lawful transformations in the
thing

Process → effect / result link → object / state

Stable State A state in which a thing, subsystem or a system will
remain unless forced to change by virtue of the
action of a thing in the environment (an external
event)

A persistent state, or any other state, which
is not unstable (see below)

Unstable state A state that will be changed into another state by
virtue of the action of transformations in the system

State A in the sequence <state A →
condition / event / consumption link →
process → result link → state B>
is an unstable state

Subclass A subset of a class, defined by a conjunction of
properties

An object class, which is related to another
class by a specialization link

Composition The things in a composite thing are its composition
Decomposition A decomposition of a composite thing is a set of

things such that every component of the composite
thing is either a member of this set or is included in
the composition of one of the members

Composition and decomposition are given
by the sequence <object → aggregation link
→ set of objects>.
The composite thing is linked at the vertex of
the aggregation symbol and its components
at the bottom

 47

APPENDIX B. OPM CONCEPTS AND SYMBOLS

Table 3. Entities – Things and States

 Entity Type Entity Symbol

Systemic, informatical object

Environmental, informatical object

Systemic, physical object

Object

Environmental, physical object

Systemic, informatical process

Environmental, informatical process

Systemic, physical process

Process

Environmental, physical process

Regular state

Initial state

Final state

State

Default state

Table 4. Structural Relations, their OPD symbols, and OPL sentences

Structural Relation Name OPD Symbol OPL Sentence

Aggregation-Participation

A consists of B.

Exhibition-Characterization

A exhibits B.

Generalization-Specialization

B is an A.

Classification-Instantiation

B is an instance of A.

Tagged Structural Link

A relates to B.

A and B are equivalent.

XOR relation E.g., A relates to either B or C.

OR relation E.g., A relates to B or C.

 48

Table 5. Procedural Links, their OPD symbols, and OPL sentences

Type Link Name Semantics OPD Symbol OPL Sentence

E
n

ab
lin

g

Lin
ks

Instrument

The process requires the

entity, but does not

change it during

execution.

P requires A.

Consumption
The process consumes

the entity.
P consumes A.

Result
The process generates

(creates) the entity.
P yields A.

T
ransfo

rm
ing

Lin
ks

Effect
The process changes

(affects) the thing.
P affects A.

Instrument

The process occurs if

the entity exists (in

some state). The process

requires the entity.

P occurs if A exists.

P requires A.

Consumption

The process occurs if

the entity exists (in

some state). The process

consumes the entity.

P occurs if A exists.

P consumes A.
C

o
nd

itio
n

al

Lin
ks

Effect

The process occurs if

the thing exists. The

process changes

(affects) the thing.

P occurs if A exists.

P affects A.

XOR relation

E.g., P affects either A

or B.

Log
ical R

elatio
n

s

OR relation

E.g., P affects A or B.

c

c

c

 49

Table 6. Event links, their semantics and symbols

Event Type Semantics OPD Symbol OPL Sentence

Agent
The process is triggered by
the intelligent object. A handles P.

State
Change

The process is triggered
when the object enters or
exits the state. The object
may be changed.

Enter: e ,
e

Exit: e ,

e

Switch: e ,
e

Any: e ,

e

A triggers P when it
enters/exists/either
enters or exists st.

St A triggers P.

General
Event

The process is triggered
when the object or process
is changed or cause external
stimuli. The object may be
consumed or changed.

 e ,
e

,
e

 A triggers P.

Invocation
The process is triggered
when the source process
starts or ends.

Start:
End:
Border:

Any:

P invokes P1 when it
starts/ends/ either
starts or ends.

P invokes P1.

Minimal or
Maximal

State
Timeout

The process is triggered
when the object violates its
minimal or maximal time
constraints for staying at the
state.

Min:
Max:
Extreme:

Any:

A triggers P when st
lasts less than Time /
more than Time /less
than Time or more
than Time.

Timeout of st A triggers
P.

Minimal or
Maximal
Process
Timeout

The process is triggered
when the process violates its
minimal or maximal
execution time constraints.

Min:
Max:
Extreme:

Any:

P1 triggers P when it
lasts less than Time /
more than Time /
either less than Time
or more than Time.

Timeout of P1 triggers P.

Reaction
Timeout

The process is triggered
when the event link violates
its minimal or maximal
reaction time constraints.

Min:
Max:
Extreme:

Any:

This link triggers P
when its reaction time
lasts less than Time /
more than Time /
either less than Time
or more than Time.

This link timeout triggers
P.

XOR relation
 E.g., A triggers either P

or Q when it changes.

OR relation
 E.g., A triggers P or Q

when it changes.

Comment: The OPL sentences in this table are for the event aspect of the link. For state change and general

event links, an additional OPL sentence, which represents its procedural aspect, should be added.

 50

APPENDIX C. ABSTRACTION ORDER OF PROCEDURAL LINKS

Table 7. Abstraction order of procedural links

 c
c

c
 e
 e
 e
 e

e

e

e

e

 e
e

e

 c c
c

c e
e e

e
e e e

c

c
c

e
e

e
e

e
e

e

c

c
e

e
e

e
e

e
e

 e
e e

e
e e e

e

e
e

e
e

e
e

e

e
e

e
e

e
e

 e
 e
 e
 e

 e
e e

e
e e e

e

e

e

e

e

e
e

e
e

e

 e

 e

e
e e e

e

e
e

e
e

e

e
e

e

