A Reflective Metamodel of Object-Process Methodglog
The System Modeling Building Blocks

Iris Reinhartz-Berger

University of Haifa
Carmel Mountain, Haifa 31905, Israel
Phone number: 972-4-8288502
Fax number: 972-4-8288522

Email: iris@mis.hevra.haifa.ac.il

Dov Dori

Technion, Israel Institute of Technology
Technion City, Haifa 32000, Israel
Phone number: 972-4-8294409
Fax number: 972-4-8295688

Email: dori@ie.technion.ac.il

A Reflective Metamodel of Object-Process Methodglog
The System Modeling Building Blocks

ABSTRACT

In this chapter, we introduce a highly expressse&f-contained reflective metamodel of
Object-Process Methodology (OPM). OPM enables usalesystem modeling based on the
notions of processes that transform objects. Extgnthe object-oriented approach, which
views processes as residents of objects, OPM pevidr the existence of stand-alone
processes that can represent transformations iplearsystems such as businesses, aircrafts,
or organisms. A system modeling and developmenhogetogy, which is a combination of
a language for expressing the universal (or don@itgdlogy and an approach for developing
systems that uses this language, can be expras€#N! using objects, processes, and links
among them. Through the reflective OPM metamodeld@monstrate the expressive power
of OPM and its applicability as a universal toal &mchitecting systems that involve structure
and dynamics in a highly, intertwined manner.

Keywords: Software Development Methodologies, |S/é&apment Methodologies, Object-

Oriented Design, Functional Design, Ontologies,aviadel, Metamodeling

INTRODUCTION

A system modeling and development methodology isombination of alanguage for
expressing the universal or domain ontology ana@moach or aprotocol for developing
systems that makes effective use of this langusigéamodeling, the process of modeling a
methodology, enables building, understanding, camgaand evaluating methodologies.
The metamodeling process produces a metamodel, a.anodel of the methodology
(metamodel site, 2003). We refer to a methodoldmpt tan model itself as eflective

methodology, and to metamodeling of a reflective methodologyeflective metamodeling.

1

In other words, a reflective metamodel is definedlgsively in terms of the modeled
methodology. A reflective methodology is especiglbwerful since it is self-contained, so it
does not require auxiliary means or external totws model itself. Object-Process
Methodology (OPM), which is a holistic system maag] development and evolution
approach that combines object-oriented notationth process-oriented concepts, is a
reflective methodology.

As noted, metamodels have become important meanscdmparing and evaluating
methodologies and their supporting CASE tools. Bg lrge, metamodels are structure- or
object-oriented, and hence pertain only to theicstelements and relations of the
methodology. They therefore do not include the pdocal parts of the methodology (also
known as "the software process"). Rather, theseisuwally described loosely and informally
in some natural language, most often English. Tla@nmeason for this omission of the
methodology's "process" part is the lack of expwvesgpower of the methodology to
seamlessly and straightforwardly describe not atdjects and structure but also processes
and behavior.

Object-Process Methodology (OPM) overcomes thigtebming by treating objects and
processes as two equally important entities ratiem viewing object classes necessarily as
superiors to and owners of processes. Through ittnedal OPM model presentation of
Object-Process Diagrams (OPDs) and Object-Procesgyuage (OPL) sentences, this
chapter presents the reflective metamodel of thguage and notation parts of OPM, namely
its semantics and syntax. The other part of thieegéfe OPM metamodel, which specifies
OPM-based system development and evolution prosesaa be found in (Dori 2002, pp.
289-309; Dori and Reinhartz-Berger, 2003). A majgnificance of this work is that it lays
out a comprehensive, generic, and formal definitioih OPM that enables domain-

independent modeling of complex systems, in wisithcture and behavior are intertwined

and hard to separate. Indeed, real-life systemmstefest can almost always be characterized
as such.

The chapter is structured as follows. First, thennmaetamodeling concepts are defined and
existing metamodeling approaches are reviewed. ,TH®n main concepts of OPM are
introduced and exemplified through a business prit&r model that handles customer orders
and retailer requests. The main part of the chastethe OPM reflective metamodel,
including all its elements, entities, and strudiupsocedural, and event links. Finally, the
contribution of OPM as a universal business modelmethodology is summarized,

emphasizing its role in defining new methodologies.

REFLECTIVE METHODOLOGIES AND REFLECTIVE METAMODELIN G

System analysis and design activities can be diviado three types with increasing
abstraction levels: real world, model, and metarh¢dan Gigch, 1991). The real world is
what system analysts perceive as reality or whstegy architects wish to create as reality. A
model is an abstraction of this perceived or coplated reality that enables its expression
using some approach, language, or methodology. fammalelis a model of a model, or,
more accurately, a model of the modeling methodolomgetamodel site, 2003). Metamodels
help understand the deep semantics of a methodddsgyvell as relationships among
concepts in different languages or methods. Theytlcarefore serve as devices for methods
development, also referred to as methods engirgeéNunseibeh et al., 1996; Rossi, et al.,
2000), and as conceptual schemas for repositorssfiovare engineering and CASE tools.
Metamodeling is the process that creates metamodéks level of abstraction at which
metamodeling is carried out is higher than thelletevhich modeling is normally done for
the purpose of generating a model of a system (étsod-Sellers and Bulthuis, 1998).

The proliferation of object-oriented methods hawegi rise to a special type of
metamodeling—reflective metamodeling, i.e., modgénmethodology using its own means

3

alone. While metamodeling is a formal definition of the timedology, reflective
metamodeling can serve as a common way to checkdantbnstrate the methodology’s
expressive power.

Existing object-oriented languages, notably thad#ad Unified Modeling Language (UML),
have partial reflective metamodels. The reflectiddL metamodel in (Object Management
Group, 2001), for example, includes class diagra®SL (Object Constraint Language)
(Warmer and Kleppe, 1999) constraints, which ameddon top of the UML graphics as a
textual means to express constraints; and natargulge explanations for describing the
main elements in UML and the static relations amitregn. This metamodel is incomplete in
more than one way. First, UML is only a notatiordamot a methodology, so only the
language elements are metamodeled, but not angdtedsiented or other) development
process. Second, class diagrams are used to mibdeh &JML views (diagram types) and
the metamodel does not enforce complete consistaaeyrements among the various views
of a UML system model. Third, most of the metamadé&iuctural) constraints are expressed
in OCL, which is a programming-language-like addt@tuML.

The Meta Object Facility (MOF) (Object Managememb@, 2003) is a standard metadata
architecture whose main theme is extensibility andport of metadata. MOF defines four
layers of metadata: information (i.e., real worldncepts, labeled MO0), model (M1),
metamodel (M2), and meta-metamodel (M3). The mettamodel layer describes the
structure and semantics of meta-metadata. In atleds, it is an “abstract language” for
defining different kinds of metadata (e.g., metassks and meta-attributes).

The Meta Modeling Facility (MMF) (Clark et al., 2P0provides a modular and extensible
method for defining and using modeling languagésomprises a static, object-oriented

language (MML) to write language definitions, alt@dMT) to interpret those definitions,

and a method (MMM), which provides guidelines amattgrns encoded as packages that can
be specialized to particular language definitions.

MOF and MMF have been applied to metamodel UMLc8ihoth are object-oriented, they
emphasize UML elements, while the procedural aspect suppressed. Since OPM
combines the object- and process-oriented appreache single framework, it can specify
system structure and dynamics in a balanced wayalticular, metamodels expressed in
OPM capture both the language and the system dawelat approach parts of the modeled

methodology.

OBJECT-PROCESS METHODOLOGY IN A NUTSHELL

Object-Process Methodology (OPM) (Dori, 2002) ihdistic approach to the modeling,
study, development, and evolution of systems. 8iracand behavior coexist in the same
OPM model to enhance the comprehension of the syatea whole. Contrary to UML with
its ten diagram types, OPM shows the system’s sire@nd behavior in the same and single
diagram type, enabling direct expression of refegjointeractions, and effects. This trait
reinforces the users' ability to construct, graspml comprehend the system as a whole and at
any level of detail. Moreover, Soffer et al. (200d9gncluded that OPM is ontologically
complete according to the Bunge-Wand-Weber (BWWal@ation framework (Wand and
Weber, 1993). The BWW framework aims to be a thmakfoundation for understanding
the modeling of information systems. Any modeliagduage (or grammar) must be able to
represent all things in the real world that migatds interest to users of information systems,
otherwise, the resultant model is incomplete (R@emand Green, 2002). Hence, OPM
completeness according to the BWW framework iscative of OPM's expressive power.
Appendix A lists the ontological constructs of infation systems, their BWW explanations,

and their OPM representation as indicted in (Sadteal. 2001).

Due to its structure-behavior integration, OPM pdeg a solid basis for modeling complex
systems. Indeed, OPM has been extended to sugp®rinbdeling of common types of
systems, including real-time systems (Peleg and, 2889), ERP (Soffer et al., 2003), and
Web applications (Reinhartz-Berger et al., 2002)re€ independent experiments showed
that OPM is more comprehensible than object-orgetéehniques in modeling the dynamic
and reactive aspects of real time systems (Peley Rori, 2000), Web applications

(Reinhartz-Berger and Dori, 2004), and discretenesenulation systems.

OPM Concepts

The elements of OPM ontology are entities and liftk#ities generalize things and states. A
thing is a generalization of apbject and aprocess — the two basic building blocks of any
OPM-based system model. At any point in time, eabject is at sometate, and object
states are changed through the occurrence of meEef\nalogously, links can also be
structural or proceduraBtructural links express static, structural relations between pairs
objects or processes. These relations hold fosyiséem regardless of the time dimension.
Aggregation, generalization, characterization, amstantiation are the four fundamental
structural relations. In addition, general struatwelations can take on any semantics, which
is expressed textually by their user-defined tags.

The behavior of a system is manifested in threeomapys: (1) processes can transform
(generate, consume, or change) things, (2) thirays enable processes without being
transformed by them, and (3) things can triggemess¢hat (at least potentially, if some
conditions are met) invoke processes. Accordinglgrocedural link can be a transformation
link, an enabling link, or an event link.

The complexity of an OPM model is controlled thrbubree scaling (refinement/abstraction)
processesin-zooming/out-zooming, in which the entity being refined is shown enuigsits

constituent elementsinfolding/folding, in which the entity being refined is shown as ithet

6

of a directed graph; arstiate expressing/suppressing, which allows for showing or hiding the
possible states of an object. These mechanismdece@&tM to recursively specify and refine
the system under development to any desired lelveletail without losing legibility and
comprehension of the complete system. Each tim@graim is about to get too cluttered, a
new diagram can be spawned. The new diagram iedit& and elaborates upon the ancestor

diagram.

The Bimodal Graphic-Text Representation of OPM

Two semantically equivalent modalities, one gragid the other textual, jointly express the
same OPM model. A set of inter-related Object-PsscBiagrams (OPDs), constitute the
graphical, visual OPM formalism. Each OPM elemeandiénoted in an OPD by a dedicated
symbol, and the OPD syntax specifies correct amsistent ways by which entities can be
connected via structural and procedural links. Oigect-Process Language (OPL), precisely
defined by a grammar, is the textual counterpadatity of the graphical OPD set. OPL is a
dual-purpose language, oriented towards humansedisaw machines. Catering to human
needs, OPL is designed as a constrained subsetgiSk, which serves domain experts and
system architects. All the stakeholders can use QR specification along with the
corresponding OPDs to jointly engage in analyzing aesigning a system. Every OPD
construct is expressed by a semantically equivadd?it sentence or phrase. Designed also
for machine interpretation through a well-defined of production rules, OPL provides a
solid basis for automating the generation of theigteed application. According to Mayer's
cognitive theory (2001), this dual representatib®©®M increases the processing capability
of humans. Moreover, OPDs constitute a completecandistent visual formalism that goes
hand in hand with the OPL in the following meaniAgything that is expressed graphically

by an OPD is also expressed textually in the corresponding OPL paragraph, and vice versa.

OPCAT (Dori et al., 2003), a Java-based Object-839€CASE Tool, automatically translates

each OPD into its equivalent OPL paragraph (cabeadf OPL sentences) and vice versa.

OPM CONCEPTS DEMONSTRATED BY AN INVENTORY SYSTEM MO DEL

Before presenting the OPM reflective metamodethis section we explain and demonstrate
OPM concepts through an OPM model of a simple lassirenterprise inventory system
which handles orders. This enterprise can get stgder products from individual customers
or from retailers. The OPM model of this enterpristich includes information modeling as
well as business process specification, is predant&igures 1-7 using both OPDs and their
corresponding OPL paragraphs. This dual representaicreases the model clarity and
accessibility, as readers who are familiar with OBMI its graphical notation can use the
OPDs, while readers who are new with OPM will phaigaprefer to start with the OPL

paragraphs. Since the graphical and textual noted OPM are equivalent, and, from a
cognitive viewpoint, complementary, the reader chnose the modality (text or graphics)
with which he/she is most comfortable and switctwleen the two at will. Furthermore, the

OPL paragraphs are self-documented and hence oefedtiner explanations.

OPM Elements

As noted, OPM consists of two types of elementsitiesand links. Entities are classified
into things and states. tiing is a generalization of an objeahd a process.Objects are
entities that exist, whileprocesses are entities that transform things by generating,
consuming, or affecting them. &ate is a situation at which an object exists. Therfa
state is not a stand-alone entity, but rather dityethat is "owned" by an object. At any
given point in time, the state-owning object i®ae of its states. The status of an object, i.e.,
the current state of the object, is changed salelyugh an occurrence of a process. Objects

and processes are respectively denoted in an OREclangles (as in class diagrams in UML

and earlier notations) and ellipses (as in data-fldiagrams). Following Statecharts
(Harel, 1987) notation, the OPD symbol of a stata irounded corner rectangle within the
rectangle of its owning object. IRigure 1, for exampleQrder, Receipt, Product Catalog ,
Customer , andRetailer are objects, whil®rdering is a process. lfrigure 2,created, paid,

supplied , andcompleted are states of therder Status attribute.

Order ;
______ Receipt Product Catalog is environmental.

" Product ' Receipt is physical.

| Catalog , Ordering lasts 1 minute to 5 minutes.

““““ Ordering requires 2 Product Catalogs.

Ordering vyields Order and Receipt.

Customer is environmental and physical.
Retailer is environmental and physical.

R Either Retailer or Customer handles Ordering.

Figure 1. Top level, System Diagransip) of the ordering system

Order exhibits Order Number, Order Status, Order
Date, and Order Price, as well as Printing.
Order Number is of type integer.
Order Status can be created, which is the
default, paid, supplied, or completed.
Created is initial.
Created lasts 2 seconds to 30 seconds.
Paid can be advance paid, which is the
default, or completely paid.
Advance paid is initial.
Completed is final.
Order Date is of type date.
Order Price is of type float.

Person

Order

Cooperation

Order Ling

Order Status

d I i
Ereale: I paid [FOPEEV] | fsupplied | [laompleted
paid__

Order Date
date

Product ID

Order consists of optional Order Lines.
- Order Line exhibits Product ID and Quantity.
Order is placed by either Person or Cooperation.
Supplied Order is an Order, the Order Status of

which is supplied.
Order 123 is an instance of Order, the Order Status
of which is paid.

Figure 2. SD1, in whichorder is structurally unfolded
A link is an element that connects two entities to repteseme semantic relation between
them. Links can be structural or proceduraktridictural link is a binary relation between two
entities, which specifies a structural aspect ef todeled system, such as an aggregation-
participation (whole-part) or a generalization-gpkzation relation.
A procedural link connects an entity with a process to denote ardymdehavioral flow of

information, material, energy, or control. Avent link is a specialization of a procedural link

which models a significant happening in the systbat takes place during a particular
moment and might trigger a process if preconditemsmet.

Links are denoted in an OPD by lines with differ¢yppes of arrowheads or triangles, as
summarized ilAppendix B. InFigure 1, for examplerdering , which is triggered (activated)
by either Customer or Retailer, usesProduct Catalog as an input, and creat€sder and
Receipt as outputs.

Any OPM element can be either systemic or enviranaleA systemic element is internal to
the system and has to be completely specifiedendnkenvironmental element is external to
the system model and may therefore be specifieg pattially. The OPD symbol of an
environmental element differs from its systemic reupart in that its borderline is dashed.
The Product Catalog in Figure 1, for example, is an environmental objagadg external to the
system but should be used as an unchangeablefanghe Ordering process.

In an orthogonal fashion, an OPM element can akseither physical or informatical. A
physical element is tangible inthe broad sense, whilen informatical element relates to
information. A physical entity is symbolized in @PD as a shadowed closed shape —
rectangle, ellipse, or rounded corner rectangleafphysical object, a physical process, or a
physical state, respectively. TReceipt in Figure 1, resulting from therdering process, is a
systemic and physical object, while tbbestomer and theRetailer are environmental and

physical objects.

OPM Things

As noted, a thing is a generalization of an obpud a process. A thing can be simple or
complex. A thing is simple if it has no parts, feas (attributes or operations), or
specializations, and is complex otherwise. ofyject is a thing that exists, at least potentially,
and represents a class of instances that haveathe structure and can exhibit the same

behavior. Theorder in Figure 2, for example, is a complex object whichibis four simple

10

attributes (each of which is an object in its ovight): Order Number , which is of type
integer,Order Status , which is of an enumeration typ@erder Date , which is of type date, and
Order Price , which is of type float.

A process is a class of occurrences (or instances) of avi@hpattern, which transforms at
least one thing. Transformation can be creationsemption, or effect (state change) of a
thing (usually an object). To carry out the tramsfation, the process may need to be enabled
by one or more things of different types of classekich are considered instruments
(enablers) for that process. An instrument is almaman object which is not transformed by

the process it enables.

Order exhibits Order Status.
Order Status can be paid, supplied, or completed.
Paid is initial.
Completed is final.
Product Catalog is environmental.
Receipt is physical.
Ordering lasts 1 minute to 5 minutes.
Ordering requires 2 Product Catalog.
Ordering zooms into Order Creation, Order Verification,
{ Product ! Retailer Order Handling, Customer Order Handling, and
jLEd Receipt Generating, as well as Product Request and Order
Type.
Order Type can be customer or retailer.
Order Creation yields Product Request.
Following path individual, Order Creation yields
customer Order Type.
Following path retail, Order Creation yields retailer
Order Type.

777777

%
Product
Request

Oreler

S Order Verification consumes Product Request.

Order Verification yields Order.

) Retailer Order Handling occurs if Order Type is retailer.

(s} Retailer Order Handling affects Order.

([Coommieies] Customer Order Handling occurs if Order Type is
customer.

Customer Order Handling affects Order.
Receipt Generating changes Order Status from either
supplied or paid to completed.
Receipt Generating yields Receipt.
Customer is environmental and physical.
Following path individual, Customer handles Order Creation.
Retailer is environmental and physical.
Following path retail, Retailer handles Order Creation.

Figure 3. SD2, in whichOrdering is in-zoomed
Analogous to an object instancepracess instance is an occurrence (one-time execution) of
the specific process. The execution time of a @®aan be constrained by minimal and
maximal limits, implying that any process executan only take a time interval that falls

within these time limits. The time limits appeartime OPD as [minimal time constraint,

11

maximal time constraint] within the ellipse repnettieg the process. For example, the
specification of the minimal and maximal time limf theOrdering process irFigure 1 and
Figure 3 implies that it must take at least 1 menammd at most 5 minutes. The corresponding
OPL sentence isOrdering lasts 1 minute to 5 minutes.”

Following the UML notation of classes and objeetshing instance is denoted in OPM by a
rectangle or an ellipse within which the class nasnaritten as ClassName ”. The identifier

of the instance can optionally precede the coldre DPL syntax for an instance makes use
of the reserved word "the" in an instance phradechvis “The ClassName InstanceName .

For example, suppose igure 3 we replacRetailer by Storex , an instance Retailer. In the

object instance box in the OPD we would wrigotex: Retailer ”, and instead of the OPL

sentence Following path retail, Retailer handles Order Creation .” we would write Following
path retail, the Retailer Storex handles Order Creation. ” If the instance identifieis not
explicitly specified, the OPL instance phrase wobkl “The ClassName instance.” In our
example the sentence would bé Retailer instance handles Order Creation. ”

A process can be atomic, sequential, or parallel. adomic process is a lowest-level,
elementary action which is not divided into subgasses, while sequential and parallel
processes are refined (usually through in-zoominty) several sequential or parallel sub-
processes. The time line in an OPD flows from tpedf the diagram downwards. Hence, the
vertical axis within an in-zoomed process defiresdxecution order: The sub-processes of a
sequential process are depicted in the in-zoonsddrof the process stacked on top of each
other with the earlier process on top of a later.on

Analogously, sub-processes of a parallel procepsapn the OPD side by side, at the same
height. InFigure 4 andrigure 5,Retailer Order Handling andCustomer Order Handling are
respectively in-zoomed, to show their two sub-psses,Paying and Supplying . In the in-

zoomed version ofustomer Order Handling (Figure 5),Paying and Supplying are executed

12

in a serial order: First, theustomer pays and only afterwardsder is supplied. In the in-
zoomed version oORetailer Order Handling (Figure 4), on the other han@®aying and

Supplying are executed independently and may occur in péaralle

i Product | Order Typs Order exhibits Order Status.
'fa}along' (atomer] [tater) Order Status can be supplied or paid.
TR Paid is initial.
Handling Product Catalog is environmental.
Order Type can be customer or retailer.
Retailer Order Handling occurs if Order Type is retailer.
Retailer Order Handling requires 2 Product Catalogs.
Retailer Order Handling zooms into Paying and Supplying,
which are executed in parallel.
Paying changes Order Status to paid.
Supplying changes Order Status to supplied.

v/ Order Status
supplisd

Figure 4. SD2.1, in whichRetailer Order Handling IS in-zoomed

The default execution order is the sequential @eepnly the parallel execution order is
specified in OPL using the reserved phraskich are executed in parallel”. For example, the
in-zooming sentence iRigure 4 is Retailer Order Handling zooms into Paying and Supplying ,

which are executed in parallel.”

Order exhibits Order Status.
curtomer | [eeater) Order Status can be created, which is the default,

Crder Typa

:E.qutg.“;j ' supplied, or paid.
Created is initial.
Created lasts 2 seconds to 30 seconds.
Paid is initial.
Product Catalog is environmental.
Order Type can be customer or retailer.
Customer Order Handling occurs if Order Type is customer.
Customer Order Handling requires 2 Product Catalogs.
Customer Order Handling zooms into Paying and Supplying.
Paying changes Order Status from created to paid.
Supplying changes Order Status from paid to supplied.

Customer Order
Handiing

supplied (<€

Figure 5. SD2.2, in whichCustomer Order Handling IS in-zoomed

OPM States

A state is a situation in which an object can be for sgragod of time. At any point in time
an object is in exactly one of its states. A state be a value from a continuous or discrete
value range, or a finite enumerated set of nanegds0Order Status in Figure 2, for example,

has four possible, top-level stategated , paid, supplied , andcompleted .

13

A state can be initial, final, or defauBoth created andpaid are initial states, as denoted by
the thick borderline rounded corner rectangle. Tiniglies thatorder Status can be generated
in either itscreated or paid states, but not at both, since at any point in tBmeobject is in
exactly one of its states. If not otherwise spediforder will be generated in itereated State
as denoted by the default mark (the small downwdgdonal arrow that points towards the
created state). Theompleted state is the final state okder Status , as denoted ifigure 2 by
the double line rounded corner rectangle. Whenrigtethis final state,Order can be
consumed (i.e., destroyed or deleted). The rese®fld phrases that describe initial, final,
and default states arg initial", "is final", and "which is the default”, respectively (seEigure 2).
Like process durations, state durations can aldoviied on one or both sides. For example,
the created state ofOrder Status In Figure 2 has a minimal time limit of 2 seconds and

maximal time limit of 30 seconds, implying thatween 2 to 30 seconds must pass from the

momentOrder Status enters itsreated state until it exits this state.

OrdeirSiaitls Product Catalog is environmental.

Order Status can be created, which is the default, or paid.
el Created is initial.

Created lasts 2 seconds to 30 seconds.
p— Paid is initial.
I
paid

Paid can be advance paid, which is the default, or
completely paid.
m Advance paid is initial.
! Paying requires 2 Product Catalogs.
Paying zooms into Advance Paying and Complete Paying.
Advance Paying changes Order Status from created to
advance paid.
Complete Paying changes Order Status from advance
paid to completely paid.

Advance
Paying

Complete
Paying

| Product :2
; Catalog |

Figure 6. SD2.2.1, in whichPaying of Customer Order Handling is in-zoomed
Like objects and processes, states can be simptmmplex. Complex states recursively
contain nested states, and the inner compositioa cbmplex state can be exposed by
zooming into it.In Figure 2, for example, in ifsid state,Order Status can be at one of two
sub-statesadvance paid , which is the default of @aid Order, or completely paid . The in-

zoomed diagram ofaying (of Customer Order Handling) in Figure 6 shows thatdvance

14

Paying first changesorder Status from created to advance paid , and thenBalance Paying

change®rder Status from advance paid to completely paid .

OPM Links

Links are the "glue" that holds entities (processed objects with their states) together and
enables the construction of system modules of gvewing complexity. OPM links are
classified into two types: structural links and gedural links, with the latter specializing into

enabling, transformation, and event links.

OPM Structural Links

A structural link denotes a structural, i.e., a static, time-indepandelation between two
elements. It usually connects two objects, bufit also connect two processes. Structural
links further specialize into general (tagged) aineal links, and four fundamental structural
links. A tagged structural link can be unidirectional, graphically symbolized-b¥, or bi-
directional, graphically symbolized by—. It is usually labeled by a textual forward tagr(f
the unidirectional link) or a pair of forward anddkward tags (for the bidirectional link).
These tags are set by the system architect to gaamveeaningful relation between the two
linked entities. InFigure 2, for example, the two objecsler andPerson are linked with a
general unidirectional, structural link tagged glaced by ”, connecting arorder with the
Person who placed it. Similarly,Order and Cooperation are linked with a tagged
unidirectional, structural link that is also lakeblés placed by ”.

The four most prevalent and useful OPM structuedhtions are termedundamental
structural relations and are assigned various triangular symbols plataty the line linking
the two things. These symbols are graphically ntiséinct and appealing to the eye than

their text tag counterparts. The fundamental stimattinks are:

15

1. Aggregation-Participation ~ denotes the fact that a thing aggregates (i.e.sistsnof, or
comprises) one or more (lower-level) things, eatkvioich is a part of the whole. It is
denoted byA , an equilateral triangle whose tip is linked te thhole and whose base is
linked to the parts. To achieve the same semante£ould useconsists of " and 'is part
of" as the forward and backward tags of a taggedirbetional, structural link,
respectively, but, as noted, using the black tleusgmbol helps distinguish this relation
from any other tagged structural relation (and ditleer three fundamental structural
relations). InFigure 2, Order consists of optional (O or mor&rder Lines, as the
multiplicity constraint * denotes.

2. Exhibition-Characterization =~ denotes the fact that a link or a thing exhibits, i®
characterized by, another lower-level thing. Thiileixion-characterization symbol & .
The exhibitor is linked to the tip of the trianglehile the features (which can be
attributes or operations) are connected to its.bbs€&igure 2,0rder exhibits (i.e., is
characterized by) the attributegder Number , Order Status , Order Date , andOrder Price
and the operatioRrinting , while Order Line exhibitsProduct andQuantity .

3. Generalization-Specialization (Gen-Spec) is a fundamental structural relation between two
entities, denoting the fact that the specializetitiea share common features, states, and
structural and procedural links with the generatizentity. The symbol of the gen-spec
relation isA , a blank triangle whose tip is linked to the gaifiging entity and its base —
to the specialized entities. Figure 2,Supplied Order defines a sub-class ofders whose
status issupplied . Like Order, Supplied Order has itsOrder Number , Order Status (which
is always supplied)prder Date, Order Price , Order Lines , and an owningPerson Or
Cooperation . It can also execute the operatimting .

4. Classification-Instantiation ~ represents a fundamental structural relation betvweeclass of

things and an instance of that class. This typdinkf is denoted byA , a triangle

16

enclosing a solid circle, the tip of which is litkéo the class, while its base — to the
instancesOrder 123 in Figure 2 is an instance of ander whose status igaid .
Structural links of the same type can be connebietOR” and “XOR” logical relations to
specify alternative structures. An “OR” relation sgmbolized by a double dashed arc
connecting the relevant structural links, whileXOR” relation is denoted by a single line,
dashed arc. lifrigure 2, for example, afrder is placed by eithera Person Or Cooperation ,
but not by both. If there were no arcs in that gption, a specificorder would have an

owningPerson and an owningCooperation .

OPM Procedural Links

A procedural link represents a dynamic relatioeein a process and an entity. Procedural
links are divided into enabling links, transfornaaitilinks, and event links. Amstrument link

is an enabling link that connects a process witlermabler of that process. The enabler is an
entity that must be present in order for that pssc® occur, but it is not transformed as a
result of the process occurrence. The instrumaehktdan originate from an object, a process,
or a state, denoting that the object existence,ptloeess existence, or the object in the
specific state is the enabler, respectively. Gregilyi, an instrument link is symbolized by
—o, while textually it is represented by the reserweord ‘“requires”. In Figure 1, for
example,Product Catalog is required for thedrdering process. However, the occurrence of
Ordering does not affecProduct Catalog Iin any way. ThereforeProduct Catalog IS an
instrument of the procesxdering . It is, however, possible that for another processh as
Catalog Updating , Product Catalog would be an affectee, i.e., an object affectedchiylog
Updating . Hence, being an instrument for a certain procksss can be though of as a “role”
of a thing class with respect to that particulargaess class.

A transformation link denotes that a thing is transformed by the ocoageof a process.

Transformations a generalization of consumption, result, andaffA consumption link is a

17

transformation link that connects an entity to agess which consumes it. A consumption
link is denoted by—» from the consumed entity to the process, while réserved word
“consumes” represents it in OPL. Ifigure 3, for exampleRroduct Request is an object that
is internal toOrdering (in object-oriented programming terms it can beuthht of as a local
variable of the methodrdering) and hence it appears in the in-zoomed frameradéring .
Product Request IS consumed by the procesgder Verification . In other wordsProduct
Request, which had existed before an occurrenceoader Verification , was consumed
(destroyed or destructed) by the execution of pinatess, and it no longer exists afteder
Verification IS over. A consumption link originating from a t&taf an object means that the
process consumes that object only when the olgentthat specific state. The corresponding
state-specified consumption OPL sentenceiscéss consumes state Object. ”

A result link is a transformation link that denotes a creatiba @rocess, an object, or an
object at a specific state. It is symbolized inGfD by—> from the process to the resultant
entity, while the reserved wordiélds” denotes it in OPL. IrFigure 3, for exampleQrder
Verification , which consumeeroduct Request , creates amrder. TheOrder had not existed
before the beginning arder Verification . Rather, it was created during this execution, iand
exists as soon awder Verification is finished.

Since a process is a pattern of behavior or exatutt is also possible for a process to
generate or consume not just an object but alsmeeps (e.g., when a process generates a
computer program that represents a process). Tid aeafusion, the arrowhead pointing at
the consuming process 4+, namely solid (black) rather than blank. HenC D>—C>
means that the right process consumes the leftwhide C>—C"> means that the right
process yields the left one.

An effect link connects a process with a thing that is affedted,undergoes a change, during

that process. The effect link, denoted in an OPDB+by where the black arrowhead pointes

18

towards the process and the blank arrowhead pmwigrds the affectee (the affected thing),
means that the affectee of the process had existéoke the process occurred and it
continues to exist after the process was finisbet at least one of its states or features has
changed.

OPL uses the reserved wordffécts” to represent effect links. lixigure 3, for example,
Retailer Order Handling andCustomer Order Handling affect Order. Figure 4 refines this effect
(state change) by explicitly showing thdying of Retailer Order Handling changeSOrder
Status from any state tpaid andSupplying change®rder Status from any state teupplied .
Figure 5 specifies thataying of Customer Order Handling change®rder Status from created

to paid, while Supplying of Customer Order Handling changesOrder Status from paid to
supplied . These refinements are made possible due to thy &b split an effect link into an
input (state consumption) link and an output (stasult) link. Overall, the meaning of input
and output links can be though of as “the processumes the input state and yields the
output state”. However, the object as a whole ithee consumed nor generated — it merely
changes its state (or its value). Suppressing lfectis states is an abstraction that hides the
states, while also joining the input and outpuitdito an effect link.

Procedural links can have multiplicity constraititee their structural counterparts. For
example, inFigure 1,0rdering requires 2Product Catalogs While affecting oneorder (the
default, when no multiplicity constraint is indiea) and yielding onReceipt . Like structural
links, procedural links of the same type can baigea by “OR” and “XOR” connectors to
denote different possible instruments, consumessyltees, and/or affectees of the same
process. InFigure 3, for exampleReceipt Generating can change@rder Status from either
paid Or supplied t0completed .

A procedural link may have one or more path lab&lpath label is a character string label

on a procedural link that removes the ambiguitysiag from multiple procedural links

19

outgoing from the same entity. When procedural dinkat originate from an entity are
labeled, the one that must be followed is the ohes& label is identical with the label of the
procedural link through which that entity was reatthThe path labels ifigure 3, for
example, specify two possible scenariosoader Creation . Symbolized by the path label
individual , this process occurs at thastomer request and it creates a temporaryer Type
object at stateustomer . Symbolized by the path labelail, the process occurs at thRetailer
request and it creates the temporarger Type object in itSretailer state. TheProduct
Request IS generated in both scenarios. Thetomer Order Handling and Retailer Order
Handling processes occur according to threler Type , as the conditional enabling links (the
instrument links with the letter ‘c’ inside themgribte. A conditional enabling link specifies
a branching control construct. If these links weeplaced by regular enabling (i.e.,
instrument) links, the semantics would be “waitilugkder Type is in itSretailer state and
then executeretailer Order Handling . Afterwards, wait untilorder Type is in itsS customer
state and then executaestomer Order Handling .”

Any type of procedural link (except for the redirik) can be made conditional. Graphically,
this is done by adding the letter ‘c’ to the linknbol, as shown iRppendix B. In OPL, a
conditional procedural link is specified by two sartes: one for its procedural aspect (e.g.,
an enabling sentencerrbcess requires Object. ”) and the other is a condition sentence. The
two possible condition sentences are a thing cmmdientence: Process occurs if Thing

exists.” and a state condition sentencetdcess occurs if Object is state.”

OPM Event Links

An event is a significant happening in the systbat takes place during a particular moment
in the system’s lifecycle, and it often triggersreo process in the system. An event is
represented by aevent link, which is a procedural link that connects a sownttty with a

destination process. Following the Event-Condithation paradigm, the semantics of an

20

event link is that the source entity attempts tgger the destination process. The process
does not start unless the event link is enabled,the event occurs, and all the process’ pre-
conditions, represented by the regular (conditiarahon-conditional) procedural links, are

satisfied.

Order exhibits Order Status, as well as Timeout Reporting,
Printing, Log Recording, and Archive Updating.
Order Status can be created, which is the default,
paid, supplied, or completed.
Created is initial.
Created lasts 2 seconds to 30 seconds.
a\ P Paid is initial.

ﬁ \ E— — Paid can be advance paid, which is the default,

compiesed or completely paid.

/ Advance paid is initial.
Completed is final.

Order Status triggers Log Recording.

Order Status triggers Archive Updating when it enters
completed, with a reaction time of 2 seconds to 5
minutes. This link triggers Timeout Reporting when
its reaction time lasts more than 5 minutes.

Order Status triggers Timeout Reporting when
created lasts more than 30 seconds.

Timeout Reporting yields Timeout Message.

? Printing invokes Log Recording when it ends.

Log Recording requires Order Status.

Log Recording vyields Log Record.

Archive Updating requires completed Order Status.

Archive Updating affects Archive.

supplied

Archive
Updating

Figure 7. SD3, in whichorder is unfolded, showing its operations and evengerg

There are five types of event links:

1. Agent Link — Anagent is an intelligent object, a human or a group ahhus, such
as a department in an organization, who initiatggogess by supplying an input
signal (e.g., pushing a button or operating a meghor supplying control data. An
agent link is an event link which connects an agent with tlee@ss it triggers. The
Ordering process irFigure 1 starts only when one of its agents, thgsichl and
environmental (externalfustomer or Retailer, enables its occurrence. The OPD
symbol of an agent link is® from the agent to the triggered process. In theé OP
paragraph, this link is represented by the resemwad “handles”.

2. State Change Event Links — The fact that an object is at some state issziple
trigger for an event. In atate change event, the actual event can happen at any
point in time between entrance to the state antlfextn it. A state change event

21

link connects an object state with the processggérs when entering or exiting
the state. An enabling state change link is syrabdlby—® , while a consumption
state change link — by—*.

A state change event has a timing attribute thegradenes at what point in time the
event occurs along the stay of the object at theesiThe possible values of the
timing attribute are any, entrance, exit, and dwiltheany state change event is an
event that can occur at any point in time during $skay of the object at the state.
The state entrance event occurs upon the object entering the state, whigestiate
exit event means that the event occurs upon the object exfleaying) the state.
The state switch event means that the event occurs upon the object edthiering
the state or exiting it. The timing of the eventlenoted graphically by théming
bar — a small bar perpendicular to the event link, sendocation along the link
from the triggering state to the triggered procggsbolizes the point in time at
which the event occurs. Thus, an enabling statewecg event link is symbolized
by +®, while a consumption state entrance event lirdyiabolized by . An
enabling state exit event link is symbolized b® and a consumption state exit
event link is symbolized by . Timing bars at both ends of the link denote a
switch (entrance or exit) state event link, white lmar at all means a state change
event link, where the event can take place at argt pn time during the object’s
stay at the state.

In OPL, a triggering sentence is added to the OPBhtesice representing the
procedural aspect of the linkarchive Updating in Figure 7, for example, is
triggered wheneveorder Status enters itscompleted state. Two OPL sentences
describe this link: the enabling sentengefiive Updating requires completed Order

Status. ” and the triggering sentencerter Status triggers Archive Updating when it

22

enters completed. ” For a state exit event link, the OPL sentence ldidae “Order
Status triggers Archive Updating when it exits completed. ” For a state change event
link which does not specify whether the event osayon entry to or exit from the
state, the corresponding sentence woulddneet Status triggers Archive Updating
when it is completed. ” For a state switch event link, which specifieattthe event
occurs either upon entry to or upon exit from ttedes the corresponding sentence
would be ‘Order Status triggers Archive Updating when it either enters or exits
completed. ”

General Event Links— A general event can be an external stimulubaage in an
object state or value, etc. The source of a gersmht link is a thing (object or
process). IrFigure 7, for example, a general event link spesifi requirement that
theLog Recording process is triggered any tingeder Status changes its state. This
single link could be replaced by five state enteaeeent links from each one of the
bottom level states dbrder Status , but the notation ifrigure 7 is more compact.
The Log Recording process does not chang@eder Status , as the enabling aspect
(the circle) of the event link;-®, denotes. A general event link can also be of type
consumption, symbolized by**, or effect, symbolized by—*, denoting that
the source object or process is respectively coaduon affected by the triggered
process. The OPL sentence that specifies the tiiggaspect of a general event
link is "Thing triggers Object. " (for example, Order Status triggers Log Recording.).
Invocation Link — An invocation link is a time-delimited eventKimetween two
processes — an invoking processl an invoked one. As noted, the vertical axis in
an OPD denotes the time line within an in-zoomext@ss. The invocation link is
used when this default process sequencing neebls twverridden, as in loops or

jumping instructions. Using the timing bar symba invocation link can trigger

23

5.

the invoked process when the invoking process sstaienoted by*Ze, ends,
denoted by 4=, starts or ends, represented B, or at any time during its
execution, represented by—. Figure 7 specifies thabg Recording is triggered
any time Printing terminates. All the possible OPL invocation seoésn are

specified inTable 5 inAppendix B.

Timeout Event Link — A timeout event link is a time-delimited linkathconnects a

timed element, which can be a process, a statanavent link, with a process
which is triggered when the element violates it®eti constraints. The timed
element is constrained by minimal and/or maximadetilimits. These constraints
limit process execution, state duration, or thectiea time between triggering a
process by an event link and the actual beginninthe triggered process. The
timing bar denotes whether reference is made teithlation minimal, maximal, or
either one of the two time constraints. When timet element (timed process,
timed state, or timed event link) violates its miai time constraint, the minimal
timeout event link, denoted by, is followed. When the element violates its
maximal time constraint, the maximal timeout evéink, denoted by—d, is
followed. The symbob—+1 represents a timeout event link which is followed
whenever an extreme time constraints is violatetijlev—_ represents an
unspecified timeout violation event. The squaredhef the timeout event link
points towards the triggered process. Thated state oforder Status in Figure 7,
for example, is specified to last 2 to 30 secolfds.lasts more than 30 seconds, it
triggers theTimeout Reporting process, announcing the occurrence of a timeout
error. All the possible OPL timeout sentences aeciied inTable 5 inAppendix

B.

24

As noted, an event link can have minimal and makimeaction timeout
constraints: if the triggered process does not stdinin the interval [minimal time
constraint, maximal time constraint] after a stioauloccurred, a timeout event
occurs. InFigure 7, for exampleArchive Updating should be triggered within 2
seconds to 5 minutes aft@rder Status enters itscompleted state.If Archive
Updating is not triggered within 5 minutes from that eveTitpeout Reporting IS

triggered, announcing the reaction timeout error.

OPM REFLECTIVE METAMODEL

Up until now we have presented OPM in a ratherrméd way and accompanied the
introduction with a running example. We devote sleeond part of this chapter to a formal
reflective model of OPM. OPM is itself a complexs®m that combines language constructs
and an approach to use that language. As suchaimenable to modeling with any modeling
language that is sufficiently expressive. In paitc, it can be modeled in terms of OPM
itself, yielding the OPM reflective metamodel. Tiest of this chapter presents the language
and notation parts of the OPM metamodel. As notieel,development part of OPM is the

focus of (Dori and Reinhartz-Berger, 2003) and,deets not described here.

The Top Level Specification

The System Diagransp), which is the top-level, most abstract specifamatof the OPM
metamodel, is presented Kigure 8.SD containsOPM and its features, which are the
attributes_anguage andNotation , and the operatiofystem Developing .

System Developing , which represents the entire OPM-based set ofegs®s, is handled by
the User, who is the agent ofystem Developing . This User can be the system architect,
developer, or any other stakeholder who uses OPMrthitect, develop, and evolve a

System, as well as a team consisting of these stakelsldéreSystem Developing process

25

requires OPM’'s.anguage andNotation as instruments (unchangeable inputs) to creataa n

System .

OPmMm 7
A

Language
|

OPM exhibits Language and Notation, as well
as System Developing.
Notation represents Language.
System Developing requires Language
and Notation.
System Developing yields System.
User is environmental and physical.
User handles System Developing.

System
Developing

System

Figure 8. SD, the top level specification, of the OPM refleetmetamodel

OPM's Language encompasses OPM elements, their features, andstiiietural and
procedural links among them, but it does not speaifything about the symbols used to
denote them. Thelotation represents theanguage both visually, through interconnected

OPD symbols, and textually, through OPL paragragpttssentences.

represents - Language consists of Elements.
Notation Notation exhibits Modality.
Modality can be graphical or textual.
AN Notation represents Language.
OPD Symbol is a Notation, the Modality of which is
graphical.

OPD Symbol graphically represents an Element.

OPL Sentence
% OPL Sentence is a Notation, the Modality of which is

‘ OPD Symbol

textual.

] Modaity OPL Sentence consists of at least one OPL Phrase.
(wptiea) OPL Phrase consists of optional OPL Phrases and
optional Atomic OPL Phrases.
Atomic OPL Phrase textually represents an
Element.
Ao OPL OPL Sentence textually represents at least one
Phrase Element.
Figure 9. SD1, in whichOPM Notation is unfolded

Unfolding Notation , SD1 (shown inFigure 9) exposes the detailed relationships beatwee
Language andNotation . Notation iS characterized bwodality , which has two possible states:
graphical andtextual . An OPD Symbol iS aNotation theModality of which isgraphical , while

an OPL Sentence IS aNotation the Modality of which istextual . An OPD Symbol graphically

represents an OPMElement, the building blocks of theanguage , while anOPL Sentence

26

textually represents severaElements . An OPL Sentence may consist of severalPL Phrases ,
each of which can be aftiomic OPL Phrase Or a comple»OPL Phrase, i.e., one that consists

of otherOPL Phrases . An Atomic OPL Phrase textually represents a single OPMElement .

Element Metamodel

Figure 10 shows the third OPD of the OPM metamddékledsD2, in which Language is

unfolded. It specifies thatanguage consists ofentities and Links, each of which is an

Element . An Entity , which exhibits (i.e., is characterized byy)ame, specializes into @hing

and astate. A Thing further specializes into abbject and aProcess . The structural relation

between arDbject and aState represents that adbject owns somesStates, while a State
specifies the status of an Object

A Link exhibits Homogeneity , which is homogeneous for a Structural Link (that usually

connects twadbjects Or two Processes) andnon-homogeneous for a Procedural Link that

usually connects arobject and aProcess. The various types of links override this

Homogeneity attribute when required.

EachElement is characterized by three orthogonal attributes:

(1) Affiliation , which can besystemic (the default) ofenvironmental . An environmental
Element iS anElement, the Affiliation of which isenvironmental . An environmental
Element is external to the system or only partially spedf while asystemic
Element is internal to the system and completely specified

(2) Essence, which can benformatical (the default) orphysical . A physical Element
consists of matter and/or energy. It can bghgical Object (e.g., aMachine), a
physical Process (e.g.,Manufacturing), a physical State (e.g.,tested), or aphysical
Link (e.g., a communication line between two remote maters). Aninformatical

Element relates to information.

27

(3) Scope, which can bepublic (the default),protected , or private . AS in programming
languages, thecope of an Element can beprivate (i.e., it can be accessed only by
itself), protected (accessible only by itself and its sub-elemerspublic (accessible
by any element in the system). Unlike the objeafded paradigm, where a method
can affect or access only the attributes of theeselass, the defauticope in OPM is
public , which implies that any OPM process can use ongéall the objects in the
model. While seemingly violating the object-oriethtencapsulation principle, this
provision increases the flexibility of modeling fgahs of behavior as OPM processes

that involve and cut across several object classes.

Adfiliation
* wstemic

Link I

Essence Structural Link

\ﬁ infarmatical
physical

Scope
l_p-ti\.rﬂtn

/ \

Homogeneaity Procedural Link

hamaganaous

non:
homaganeoys

Event Link

Element exhibits Affiliation, Essence, and Scope.

Affiliation can be systemic, which is the default, or environmental.

Essence can be informatical, which is the default, or physical.

Scope can be public, which is the default, protected, or private
Language consists of Entity and Link.

Entity is an Element.

Entity exhibits Name.

Thing is an Entity.

Object is a Thing.

Object owns optional States.

Process is a Thing.

State is an Entity.

State specifies the status of an Object.

Link is an Element.

Link exhibits Homogeneity.

Homogeneity can be homogeneous or non-homogeneous.

Structural Link is a Link, the Homogeneity of which is homogeneous.

Procedural Link is a Link, the Homogeneity of which is non-homogeneous.

Event Link is a Procedural Link.

Figure 10. sSD2, in whichLanguage of OPMis unfolded

28

Thing Metamodel
Unfolding Thing of the OPM metamode$pD2.1 (Figure 11) shows itBerseverance attribute,
which can bestatic or dynamic . An Object IS a Thing with static Perseverance , while a
Process iS aThing with dynamic Perseverance . In addition toPerseverance , a Thing also
exhibits theConcreteness attribute, which determines whether the thing islaas (the
default) or aninstance . The difference between abject class and anObject instance IS
similar to the difference between these concepthenobject-oriented approach.Pfocess
instance IS an occurrence of the process class, whichptsinis a behavior pattern that the
process instances follow. In programming termBioaess instance can be thought of as an
executable version of code, which can be executgukaified finite number of times, while
aProcess class is the complete code that can be (re)compiledexeduted unboundedly.
An Object can optionally exhibitrype (e.g.,integer, float, Or string), whether it isPersistent
(i.e., stored in a database), whether idg, and optionalndices . Eachindex is an ordered

tuple ofObjects .

Thirng i
il

Con

Tirmad
Element

reteness

Winimal Tinne
Consiraint
]

Ohjert

I -{ordered} Parsawerances

ﬁ l static]
L | synamic |

Mlaximal Time
Constraini

"W infintty

Duration
Listribution
Functinn

Process

FPersistent
boolsan

Exacution Ordar

Key :

Function
i3 boolzan

[amme

Paramatei

() () () ())
G e) (8] G)

Timed Element exhibits Minimal Time Constraint, Maximal Time Constraint, and an optional Duration Distribution
Function.

Minimal Time Constraint is 0 by default.

Maximal Time Constraint is infinity by default.

Duration Distribution Function exhibits Function Name and optional Parameters.
Thing exhibits Concreteness and Perseverance.

Concreteness can be class, which is the default, or instance.

Perseverance can be static or dynamic.
Object is a Thing, the Perseverance of which is static.
Object exhibits Persistent, Key, optional Indices, and an optional Type.

Persistent is of type Boolean.

29

Key is of type Boolean.

Index relates to an ordered set of at least one Object.

Type can be integer, unsigned integer, short, long, float, double, boolean, char, string, date, or time.
Process is a Thing, the Perseverance of which is dynamic.
Process is a Timed Element.
Process exhibits Execution Order.

Execution Order can be atomic, which is the default, sequential, or parallel.

Figure 11. sD2.1,in whichThing of OPM Language is unfolded
Process , which isa Thing with adynamic Perseverance , iS also alimed Element and as such
it inherits Minimal Time Constraint (0 by default) andiaximal Time Constraint (infinity by
default). As noted, these constraints limit t#hecess execution time within the specific
bounds.Process also inherits fronTimed Element a Duration Distribution Function , which is
characterized byunction Name andParameters . This function specifies the distribution of
the process duration that determines how long agsexecution lasts and it is most useful
for simulation purposes.
In addition,Process exhibits Execution Order , which can beatomic , sequential , Or parallel .
Since a process can be either sequential or plaflille not both), a zoomed-in process will
have sub-processes that are all depicted eithekestaor in a row, but not as a mixture of

these two modes.

State Metamodel

A state, which describes a situation at which ambject can be, cannot stand alone, but is
rather “owned” by an object. At any given pointtime, anObject can be at exactly one of
the States it owns, or in transition between two states. L&Perocess, a State iS a Timed
Element, and as such it exhibitginimal Time Constraint andMaximal Time Constraint , i.€.,
the minimal and maximal bounds for a continuoug sfathe owningobject in thatState. As
aTimed Element , State also exhibitDuration Distribution Function for simulation purposes.
The OPD labeledsD2.2 (Figure 12) specifies that state has three additional Boolean
attributes:nitial , Final, andDefault . Initial determines whether the object can be initially. (i.e

upon its creation) at this stat€inal determines whether the object can be consumed

30

(destroyed) when it is at that stabefault determines whether this state is the default $tate
value) of the owning object, i.e., the state inthickh the object enters when there is no
specified initial state or more than one initiahtst The self aggregation attachedstate
indicates that a stat@ay recursively consist of lower-levetates, which are nested sub-

states.

Timzd
Element

State is a Timed Element.
State exhibits Initial, Final, and Default.

Initial:bootean Initial is of type Boolean and is false by default.
W fame | Final is of type Boolean and is false by default.
Default is of type Boolean and is false by default.
Fitibonledn State consists of optional States.
Default: boalean
4 false]

Figure 12. sD2.2, in which State of OPM Language is unfolded

Link Metamodel

As sD2.3 (Figure 13) shows, aink exhibits two link endsSource End andDestination End .
Both are specializations afnk End , which is characterized IBarticipation Constraint (also
known as multiplicity) Participation Constraint defines thevinimal Cardinality (with 1 as its
default value) and thetaximal Cardinality (also 1 by default). These specify the minimal and
maximal number of instances that can be connegtatiéblink at the corresponding (source
or destination).ink End . In addition aLink exhibits theHomogeneity attribute, which has two
statesihomogeneous andnon-homogeneous . A Link IS homogeneous if both itsLink Ends ,
i.e., itsSource End andDestination End , are linked torhings whosePerseverance value are
the same. In other wordshamogeneous Link connects either twobjects Or twoProcesses ,
while anon-homogeneous Link usually connects a0bject t0 a Process . Structural Links
which denote static, non-temporal relations betweke linked Entites, are usually

homogeneous Links . Procedural Links , which model the behavior of the system along time

31

and represent flows of data, material, energy ooitrol between the linked entities, ai-

homogeneous Links by default.

Link End exhibits Participation Constraint.
Participation Constraint exhibits Minimal
Cardinality and Maximal Cardinality.
Minimal Cardinality is 1 by default.
Maximal Cardinality is 1 by default.
Link End is linked to an Element.
Link exhibits Source End, Destination End, and
Homogeneity.
Source End is a Link End.
Destination End is a Link End.
Homogeneity can be homogeneous or non-

Elamant Link End

1
T
£

A
)

Link End

Source
Emil

Participation
Constraint

Destination
End

Pdinimal
Cn_ri:nn%w homogeneous.
o Structural Link is a Link, the Homogeneity of which is
Homogsnaity Waxirmal homerneou's- i i
[homeganacus Cardinality 2 Link Ends of Structural Link are either
N D linked to 2 Objects or 2 Processes.

Procedural Link is a Link, the Homogeneity of which is
non-homogeneous.
5 Source End of Procedural Link is linked to an
Entity.
Destination End of Procedural Link is linked
to a Process.
Event Link is a Procedural Link.

[
hemaogenesus

Destiation
nil

Process

Figure 13. sD2.3, in whichLink of OPM Language is unfolded

Determining link attribute values

The values of th&ssence, Affiliation , andScope link attributes, inherited frorglement, are
determined according to the corresponding valuethefentities the link connects. If the
entities have different values, a conflict ariskattmandates a decision process based on
three rules: the link essence, the link affiliatiand the link scope rules.

The link essence rule defines that th&ssence value of a link isphysical if the Essence of

the two Elements it connects isphysical . Hence, aphysical Link can connect only two

physical Elements , as described iRigure 14 by an OPM model.

Element exhibits Essence.
Essence can be informatical, which is the
default, or physical.

Physical Element is an Element, the Essence of which is

Ehyzical

e physical.
Physical Link is a Link, the Essence of which is
Essen-.;e physical.

Source End of Physical Link is linked to
Physical Element.

Destination End of Physical Link is linked to
Physical Element.

Figure 14sD2.3.1, in which theLink Essencerule is specified

32

Thelink affiliation rule determines thathe Affiliation value of a link isenvironmental if the
Affiliation of the twoElements it connects ignvironmental . Hence, arnvironmental Link can

connect only twenvironmental Elements , as specified ifrigure 15.

Element exhibits Affiliation.
Affiliation can be systemic, which is the
default, or environmental.
Environmental Element is an Element, the Affiliation of
which is environmental.
Environmental Link is a Link, the Affiliation of which is
environmental.
Source End of Environmental Link is linked
to Environmental Element.
Destination End of Environmental Link is
linked to Environmental Element.

Afilindion _i
al

Frtemis |

Destination

Figure 15sD2.3.2, in which theLink Affiliation rule is specified

Source Element is an Element.

Destination Element is an Element.
Link exhibits Source End and Destination End, as well as Link
A\ Scope Declaring.
Source End is linked to Source Element.
Destination End is linked to Destination Element.
Following path a, Link Scope Declaring occurs if
Scope of Source Element is private and Scope of
Destination Element is private.
Following path a, Link Scope Declaring yields private
Scope of Link.
Following path b, Link Scope Declaring occurs if Scope of

Destination
Element .

Source Element is private and Scope of Destination Element is
[prrwats T protected.
. - Following path b, Link Scope Declaring yields protected Scope
, of Link.
eitte Following path ¢, Link Scope Declaring occurs if Scope of
Source Element is private and Scope of Destination Element is
(B ey Tt [| public
-) L) L) Following path ¢, Link Scope Declaring vyields public Scope of
Link.

Following path d, Link Scope Declaring occurs if Scope of Source Element is protected and Scope of Destination Element
is private.

Following path d, Link Scope Declaring yields protected Scope of Link.

Following path e, Link Scope Declaring occurs if Scope of Source Element is protected and Scope of Destination Element
is protected.

Following path e, Link Scope Declaring yields protected Scope of Link.

Following path f, Link Scope Declaring occurs if Scope of Source Element is protected and Scope of Destination Element
is public.

Following path f, Link Scope Declaring yields public Scope of Link.

Following path g, Link Scope Declaring occurs if Scope of Source Element is public and Scope of Destination Element is
private.

Following path g, Link Scope Declaring yields public Scope of Link.

Following path h, Link Scope Declaring occurs if Scope of Source Element is public and Scope of Destination Element is
protected.

Following path h, Link Scope Declaring yields public Scope of Link.

Following path i, Link Scope Declaring occurs if Scope of Source Element is public and Scope of Destination Element is
public.

Following path i, Link Scope Declaring yields public Scope of Link.

Figure 16sD2.3.3, in which theLink Scopeis specified
Thelink scope rule determines thecope value of aLink as the widest of thecope values of

the two connectedelements, where public, protected , and private are the widest,

33

intermediate, and most narr@wope values, respectivelfigure 16 specifies a processk

Scope Declaring , that enforces this rule.

Structural Link Metamodel

sD2.4 (Figure 17) unfolds OPMstructural Links . A Structural Link is characterized by
Orderability , which can beordered (e.g., an array) ounordered (e.g., a set) by default. An
ordered Structural Link adds the reserved label {ordered} next to $lvactural Link symbol.
In Figure 11, for exampledbject is characterized by optionaldices , each of which is an
ordered set abbjects .

SD2.4 also unfolds the two types o$tructural Links : Tagged Structural Links and
Fundamental Structural Links . A Tagged Structural Link exhibitsForward Tag , whose default
value is the stringrélates to”, and Directionality . A Bi-Directional Tagged Structural Link
which is aTagged Structural Link WhoSeDirectionality IS bi-directional , exhibits in addition
Backward Tag , whose default value isull, and the default value of its (inheriteehrward
Tag is “are equivalent”.

Fundamental Structural Links specialize intoAggregation-Participation Link , Exhibition-
Characterization Link , Generalization-Specialization Link , andClassification-Instantiation Link
Structural Links of the same type can be connected by “OR” andX@R” relations. This is

”

specified by the self tagged structural links lalelis or-connected to ” and ‘is xor-

connected to ", respectively.

SD2.4.1 (Figure 18), which unfolds threundamental Structural Links , specifies constraints on
theElements that can be connected by this type of links. Bedtggtural Links , Fundamental
Structural Links connects twdDbjects Or two Processes . There are two exceptions to this

simple rule. These exceptions, which overrideHb@ogeneity attribute ofStructural Links

are explicitly specified ir$D2.4.1:

34

Structural Link

N, Orderability "\‘
ed

unordered [ordered Fundamental Tagg
; l— Structural Structural
Link Link
s noe conmecied to
Aggregation- \ Forward Tag
F’al‘tij\npkatltln Bi-Directional \|m
Tagged Structural —
- — Link
et Diractionality
= or connecied 10 ﬁ
" \bj ditectional |
Exhibition [bi- |
L Characterization S

Forward Tag
' XOf CONMECtad 10 |
vare equivalent:

Is or conmected 1o

B
=
=
=

]

Generalization-
1 Specialization Backward Tag

‘ o)

s xor connectad i

-
=
=

fs or conneciad 1o

J

Classification-
Instantiation
Link

¢
5
g
8
3
i
£
5

Structural Link exhibits Orderability.

Orderability can be unordered, which is the default, or ordered.
Tagged Structural Link is a Structural Link.
Tagged Structural Link exhibits Forward Tag and Directionality.

Forward Tag is “relates to” by default.

Directionality can be uni-directional or bi-directional.
Tagged Structural Link is xor-connected to optional Tagged Structural Links.
Tagged Structural Link is or-connected to optional Tagged Structural Links.
Bi-Directional Tagged Structural Link is a Tagged Structural Link, the Directionality of which is bi-directional.
Bi-Directional Tagged Structural Link exhibits Backward Tag.

Backward Tag is null by default.

Forward Tag of Bi-Directional Tagged Structural Link is “are equivalent” by default.
Fundamental Structural Link is a Structural Link.
Aggregation-Participation Link is a Fundamental Structural Link.
Aggregation-Participation Link is xor-connected to optional Aggregation-Participation Links.
Aggregation-Participation Link is or-connected to optional Aggregation-Participation Links.
Exhibition-Characterization Link is a Fundamental Structural Link.
Exhibition-Characterization Link is xor-connected to optional Exhibition-Characterization Links.
Exhibition-Characterization Link is or-connected to optional Exhibition-Characterization Links.
Generalization-Specialization Link is a Fundamental Structural Link.
Generalization-Specialization Link is xor-connected to optional Generalization-Specialization Links.
Generalization-Specialization Link is or-connected to optional Generalization-Specialization Links.
Classification-Initialization Link is a Fundamental Structural Link.
Classification-Initialization ~ Link is xor-connected to optional Classification-Initialization Links.
Classification-Initialization Link is or-connected to optional Classification-Initialization Links.

Figure 17. SD2.4, in whichStructural Link 0of OPM Language is unfolded

1. An Exhibition-Characterization Link ~ connects &hing or aLink (as itsSource End) and

an Entity (as itsDestination End). For example, the communication link between

remote computers, which is modeled a&gyed Structural Link , can be characterized

by the objecfransfer Rate and/or the procedancrypting.

2. A Generalization-Specialization Link can connect twastates of different Objects to

represent state inheritance. In this type of Iwkjch is calledState Generalization-

35

Specialization Link , the inherited state has at least the same stal@nd procedural

links as the inheriting state.

Fundamenial
Strctural
Link

Aggragation-
Generalization- Fafticipation
Specialization [T Link
Link

Exhibition.
Charactenzation
Link 75
State Gensralization]

Specialization Link

SHourca
End

Classification-
Instantiation
Link

i Source
= ANk 12 B

Diestination
1l

Aggregation-Participation Link is a Fundamental Structural Link.
Exhibition-Characterization Link is a Fundamental Structural Link.
Source End of Exhibition-Characterization Link is linked to either Link or Thing.
Destination End of Exhibition-Characterization Link is linked to Entit y.
Generalization-Specialization Link is a Fundamental Structural Link.
State Generalization-Specialization Link is a Generalization-Specialization Link.
Source End of State Generalization-Specialization Link is linked to State.
Destination End of State Generalization-Specialization Link is linked to State.
Classification-Instatiation Link is a Fundamental Structural Link.

Figure 18. SD2.4.1, in whichFundamental Structural Link of OPM Language is unfolded

Table 1 summarizes the possible structural relatimiween OPM elements in a tabular way.

Table 1. Possible structural relations between OPM elemé&énd D denote the link

source and destination, respectively. + denotegal link.

Tagged Structural Link / Exhibition-Characterization Link
Aggregation-Participation Link

s | Object | Process| State Link s | Object | Process State Link
D D
Object + - - - Object + + - +
Process - + - - Process + + - +
State - - - - State + + - +
Link - - - - Link - - - -

Generalization-Specialization Link Classification-l nstantiation Link

s | Object | Process| State Link \ Object | Process State Link
D D
Object + - - - Object + - - -
Process| - + - - Process - + - -
State - - + - State - - - -
Link - - - - Link - - - -

36

Procedural Link Metamodel

Any Procedural Link has aProcess as itsDestination End , while itsSource End is connected
to ankntity . As shown insD2.5 (Figure 19), arocedural Link exhibits three attributegsink
Type, Conditionality , and optionalPath Labels. The Link Type of a Procedural Link
distinguishes primarily betweesmabling and transforming Procedural Links . Transforming
Procedural Links are further divided intaaffecting , consuming , and resulting Procedural

Links .

Procedural Link

g o conneched 1o
E |

nstrument
Link

= xor connected 1o |

|a o conmactad 1O

Link Type |: Consumptiaon
Link

b inkad o
Source
Entity End
5 inked 1o e
Destination
Process End

Conditionality in
| eanditianal] lunconditional | Eraliing Jf |‘§J‘°_wwec__eu__° T >
3 |5 o conmEcied 10
/ ™

Path Label

[Result
Link
transforming
SP—— | |5 nov connected 1o
resulting |

s or connectad 10
Effect

Link
j2 xor connacted o ¥

cansuming |

[affecting J__

L.

-

Procedural Link exhibits Link Type, Conditionality, and optional Path Labels.
Link Type can be enabling or transforming.
Transforming can be consuming, resulting, or affecting.
Conditionality can be conditional or unconditional.
Source End of Procedural Link is linked to Entity.
Destination End of Procedural Link is linked to Process.
Instrument Link is a Procedural Link, the Link Type of which is enabling.
Instrument Link is xor-connected to optional Instrument Links.
Instrument Link is or-connected to optional Instrument Links.
Consumption Link is a Procedural Link, the Link Type of which is consuming.
Consumption Link is xor-connected to optional Consumption Links.
Consumption Link is or-connected to optional Consumption Links.
Result Link is a Procedural Link, the Link Type of which is resulting.
Result Link is xor-connected to optional Result Links.
Result Link is or-connected to optional Result Links.
Effect Link is a Procedural Link, the Link Type of which is affecting.
Effect Link is xor-connected to optional Effect Links.
Effect Link is or-connected to optional Effect Links.

Figure 19. SD2.5, in whichProcdural Link of OPM Language is unfolded
A conditional Procedural Link , i.e., aProcedural Link WhoSe Conditionality iS conditional ,
enables therocess execution only if the condition it symbolizes helelse the destination

Process is skipped and the next process in turn is exathfoe possible execution. With the

37

exception ofResult Link , each type of procedural link can be eithebm@litional Procedural

Link or anunconditional Procedural Link . A Result Link cannot be aonditional Procedural

Link simply because thentity which theProcess generated upon its completion cannot be a
condition for theProcess that generated it.

Like a Structural Link , aProcedural Link can be connected by “XOR” and “OR” relations to
otherProcedural Links of the same type, as shown by the self taggedtatal links labeled

“is xor-connected to " and “is or-connected to " in SD2.5.

Event Link Metamodel

As noted, arkvent Link , which is unfolded irsD2.6 (Figure 20), is &imed Element . As such,

it inherits Minimal (reaction) Time Constraint , Maximal (reaction) Time Constraint , and
Duration Distribution Function as its attributes. ThBuration Distribution Function ~ of anEvent
can be used for system simulation to define theibiigion of the time that passes from the
event occurrence to the start of the correspontiiggered process.

SD2.6 also specifies the five types afent Links : Agent Link ; State Change Event Link |,
which can beentrance State Change Event Link , exit State Change Event Link , switch State
Change Event Link , Or any State Change Event Link ; General Event Link ; Invocation Link ,
which can beprocess start Invocation Link , process end Invocation Link , process border
Invocation Link , Or any Invocation Link ; and Timeout Event Link , which can beminimum
Timeout Event Link , maximum Timeout Event Link , extreme Timeout Event Link , Or any
Timeout Event Link .

An Event Link can be anyrocedural Link , except for a&esult Link , since the sourcentity of
aResult Link is created during therocess and, hence, cannot trigger it. ARent Link cannot
be a conditional procedural link, since it triggéne process rather than just specifying an

execution requirement on it.

38

Timed
Element

Event Link

i

ZS Is or connacted 10 s x0¢ connectad 1o
[V- [3.
Timeout Event Link
|minimum | lmaximumJ lextreme | l any]
15 or connected 1o |5 xor connectad 1o

Invacation Link
[process [process [process i
start J l end] | border | l o J
= or connected 1o iavor connected 10

[V| V-

General Event Link

Source End

s or connected 10

—
State Change Event Link
[Entrance] | exit } | switch | [any]

}a o gonnacted 1o ks xor connected 10 Source End

V.

4{ Agent Link

Event Link is a Timed Element.
Timeout Event Link is an Event Link.
Timeout Event Link can be minimum, maximum, extreme, or any.
Source End of Timeout Event Link is linked to a Timed Element.
Timeout Event Link is xor-connected to optional Timeout Event Links.
Timeout Event Link is or-connected to optional Timeout Event Links.
Invocation Link is an Event Link.
Invocation Link can be process start, process end, process bordered, or any.
Source End of Invocation Link is linked to a Process.
Invocation Link is xor-connected to optional Invocation Links.
Invocation Link is or-connected to optional Invocation Links.
General Event Link is an Event Link.
Source End of General Event Link is linked to a Thing.
General Event Link is xor-connected to optional General Event Links.
General Event Link is or-connected to optional General Event Links.
State Change Event Link is an Event Link.
State Change Event Link can be entrance, exit, switch, or any.
Source End of State Change Event Link is linked to a State.
State Change Event Link is xor-connected to optional State Event Links.
State Change Event Link is or-connected to optional State Event Links.
Agent Link is an Event Link.
Source End of Agent Link is linked to an Object.
Agent Link is xor-connected to optional Agent Links.
Agent Link is or-connected to optional Agent Links.

tankedtoa

Figure 20. sSD2.6, in whichEvent Link of OPM Language is unfolded

39

COMPLEXITY MANAGEMENT IN OPM

As noted, OPM is a comprehensive systems evolutiethodology. As such, it comprises
not only a modeling language but also an approachdéveloping and evolving systems.
Enabling both top-down and bottom-up developmenbcgsses through its build-in
complexity management mechanisms, OPM supportslemld development. Complexity
management aims at balancing the tradeoff betweenm ¢tonflicting requirements:
completeness and clarity. Completeness requirdsthikasystem details be stipulated to the
fullest extent possible, while the need for clartyposes an upper limit on the level of
complexity and does not allow for an OPD that is ttuttered or overloaded with entities
and links among them. The seamless, recursivesaledtive OPM scaling, i.e., refinement-
abstraction, enables presenting the system atusrietail levels without losing the “big

picture” and the comprehension of the system abaewv

Refinement-Abstraction Mechanisms

OPM features three built-in refinement-abstractmachanisms, which are in-zooming and
out-zooming, unfolding and folding, and state-espieg and state-suppressing.

In-zooming and out-zooming are a pair of refinememd abstraction mechanisms,
respectively, which can be applied to all the theasty types: objects, processes, and states.
In-zooming of(i.e., zooming into) an entity decreases the detaof viewing it, such that
lower-level elements enclosed within the entity dme visible. Conversely, out-zooming
(i.e., zooming out) of a refined entity increaskes tistance of viewing it, such that all the
lower-level elements that are enclosed within &dyee invisible. Figures 1, 3, 4, 5, and 6 are
diagrams which result from in-zooming of differgmbcesses in the inventory system.
Unfolding/folding is a refinement/abstraction megisan, which can be applied to things —

objects or processekinfolding reveals a set of lower-level entities that aredrhically

40

below a relatively higher-level thing. The hieraydl with respect to one or more structural
links. The result of unfolding is a graph the robwvhich is the thing being unfolded. Linked
to the graph are the things that are exposed esuét of the unfolding. Converselfplding is
applied to a tree from which a set of unfolded tesgtiis removed, leaving just the root.
Figures 2 and 7 result from unfolding the order eobjof the inventory system.
Unfolding/folding can be applied fully or partialljo any subset of descendants (parts,
specializations, features, or instances) of a tltgect or process).

Sate expressing is a refinement mechanism applied to objects wihisteals a set of states
inside an objectSate Suppressing is the abstraction mechanism which conceals apfet
states inside an object. For example, the ordeéussia the inventory system is fully state-
expressed in Figures 2 and 7 and only partialliestapressed in Figures 3, 4, 5, and 6. This
object is state-suppressedHigure 1.

Two entities in an OPD can be connected by at mestprocedural link. While abstracting, a
conflict between two competing links arises wheneatity in the OPD is abstracted. A
typical example is a process with two sub-processash of which is linked to the same
object by a different procedural link, e.g. aniiastent and a consumption link. When this
process is out-zoomed, only one of these links sit@demain, and the question is which one
prevails. The link needs to be at least as abstacthe more abstract link of the two
competing links, so it may be one of these two edoecal links or a third link which is more
abstract than either one of themHigure 3, for example, the objewtder is connected to the
three sub-processes Ofdering through three links: a result link (torder Verification) and
two effect links (toCustomer Order Handling and toRetailer Order Handling). When out-
zooming ofOrdering , the result link and the two effect links are es@d by a single result
link, as shown irFigure 1.Figure 3 shows thabrder Status , which is anOrder attribute, is

connected taReceipt Generating by two input (consumption) links and one outpus(rt)

41

link. After suppressing the states @ider Status , this object remains connectedReceipt
Generating with an effect link. Appendix C summarizes the abstraction order of gulacal
link by a table. This table defines for each twogedural links a third procedural link which
replaces the two when abstracting (folding, outraimg, or state-suppressing) the two
procedural links. This table is the basis for definthe procedural aspects of OPM, which
are also essential parts of the OPM reflective metiel (Dori 2002, pp. 289-309; Dori and

Reinhartz-Berger, 2003).

SUMMARY

A comprehensive reflective metamodel of OPM hasnbpeesented, using a bimodal
representation of Object-Process Diagrams and ©OBjecess Language paragraphs.
Although there seems to be a consensus among <ljented languages that a system
model should describe not just the structural aspiea methodology but also its behavioral
aspect (e.g., UML interaction diagrams), both tlnantics and notations of system
dynamics are confusing and incomplete. Furthermitie,metamodel of the UML industry

standard depicts only the language part, leaving (boftware or any other) system
development processes informally as a “Unified Bssc’ In sharp contrast to this, OPM,
being an object-process approach, enables refectnetamodeling of the complete
methodology, including its language (with both @enceptual-semantic and notational-
syntactic aspects) and the OPM-based system deweltdpprocess. This ability to create a
reflective metamodel of OPM is indicative of OPMgressive power, which goes hand in
hand with OPM's ontological completeness accordmghe Bunge-Wand-Weber (BWW)

evaluation framework (Soffer et al., 2001).

Besides being the source for OPM’s definition, teective metamodel of OPM can serve
other important goals. It can be used as a basia theoretical comparison between OPM
and various object-oriented methods. COMMA, the @mm Object-oriented Methodology

42

Metamodel Architecture, project (Henderson-Selbard Bulthuis, 1998) used metamodeling
to construct metamodels of popular object-orientegthodologies and identify a core that
was later used as a basis for OPEN, Object ProEes&,onment, and Notation (OPEN site,
2003). The OPM metamodel can be compared to thesmammodels and an automatic
transformation generator can be made between pophjact-oriented methodologies, such
as UML, and OPM. Indeed, OPCAT, Object-Process CA®EI, (Dori et al., 2003) can
automatically generate a set of UML views, inclgdinse case, class, sequence, activity,
Statecharts, and deployment diagrams, from thdesi@M model.

The reflective OPM metamodel helps also define maplementation generator, which
automatically transforms the OPM model resultirgrirthe system’s analysis and design into
a database scheme and executable code. The beofetitss implementation generation
include increasing productivity and quality; enafjlimechanical and repetitive operations to
be done quickly, reliably and uniformly; and relmy designers from mundane tasks so they
can focus on creative tasks that require humarligeace. OPM-GCG (Reinhartz-Berger
and Dori, 2004), the generic code generator of ORBhdles dynamic repositories of
translation rules from an XML syntax of Object-Rees Language to various target
programming languages. These translation rulesl@fieed in a separate offline tool and are
used by the implementation generator at will. Bdiaged on OPM, OPM-GCG enables the
generation of potentially complete application togather than just skeleton code.

The different OPM system development and evolupoocesses, as well as the refinement
and abstraction mechanisms, provide a theoreticaidation for improving OPCAT to make
it a fully Integrated System Engineering Environtn@nSEE). OPCAT already supports
system simulation during the design phase, OPD rgéna from an OPL script, OPL

generation from an OPD-set, and implementation iggioa.

43

REFERENCES

Clark, T., Evans, A., & Kent, S. (2002). EngineegriModeling Languages: a Precise Meta-
Modeling Approach. 8 International Conference on Fundamental Approsth&oftware
Engineering (FASE’2002), 159-173.

Dori, D. (2002).Object-Process Methodology - A Holistic Systemsadam Springer
Verlag Press.

Dori, D., & Reinhartz-Berger, I. (2003). Reflectivdetamodel of OPM — An OPM-Based
System Development Process. Proceedings of tH8 [R®ernational Conference on
Conceptual Modeling (ER’2003), Lecture Notes in Qomer Science 2813, pp. 105-117.

Dori, D., Reinhartz-Berger, I., & Sturm A. (2003pPCAT — A Bimodal Case Tool for
Object-Process Based System Development. ProceedEGE/ACM 8 International
Conference on Enterprise Information Systems (ICHI&3), 286-291.

Download site of the softwarbttp://www.objectprocess.org/

Harel, D. (1987). Statecharts: a Visual Formalisan Complex Systems, Science of
Computer Programming, 231-274.

Henderson-Sellers, B., & Bulthuis, A. (1998). Olj€riented Metamethods. New York:
Springer Verlag Press.

Mayer, R.E. (2001). Multimedia Learning. NewYorkai@bridge University Press.

Metamodel site. (2003). What is metamodelling, amdat is a metamodel good for?

http://www.metamodel.com/

Nuseibeh, B., Finkelstein, A., & Kramer, J. (199@thod engineering for multi-perspective
software development. Information and Software hebbgy journal, 38 (4), 267-272.

Object Management Group (OMG). (2001) UML 1.4 - UNMBemantics. OMG document
formal/01-09-73http://cgi.omg.org/docs/formal/01-09-73.pdf

Object Management Group (OMG). (2003). Meta Objkeaatility (MOF) SpecificationOMG
document formal/02-04-08itp://cgi.omg.org/docs/formal/02-04-03.pdf

OPEN web site. (2003ttp://www.open.org.au/

Peleg, M., & Dori, D. (1999). Extending the Objéutbcess Methodology to Handle Real-
Time Systems, Journal of object-oriented prograngmii (8), 53-58.

Peleg, M. & Dori, D. (2000). The Model MultiplicitfProblem: Experimenting with Real-
Time Specification Methods. IEEE Transaction ont8afe Engineering, 26 (8), 742-759.

Reinhartz-Berger, 1., & Dori, D. (2004). Object-Bess Methodology (OPM) vs. UML: A
Code Generation Perspective. Accepted to the 9tiSEMIP8.1/EUNO International

44

Workshop on Evaluation of Modeling Methods in Syste Analysis and Design
(EMMSAD’04).

Reinhartz-Berger, 1., & Dori, D. (2004). OPM vs. WM Experimenting Comprehension and
Construction of Web Application Models. Accepted Emprical Software Engineering
journal.

Reinhartz-Berger, I., Dori, D., & Katz S. (2002)PM/Web - Object-Process Methodology
for Developing Web Applications. Annals of SoftwaEmgineering — Special Issue on
Object-Oriented Web-based Software Engineering--181.

Reinhartz-Berger, 1., Dori, D., & Katz S. (2002)p&h Reuse of Component Designs in
OPM/Web. Proceeding of Computer Software and Apgbhn Conference
(COMPSAC’2002), 19-24.

Rosemann, M., & Green, P. (2002). Developing a Métalel for the Bunge-Wand-Weber
Ontological Constructs. Information Systems, 279715

Rossi, M., Tolvanen, J.P., Ramesh, B., Lyytinen,&Kaipala, J. (2000). Method Rationale
in Method Engineering. Proceedings of the®38awaii International Conference on
System Sciencegttp://www.computer.org/proceedings/hicss/0493/@408932036.pdf

Soffer, P., Golany, B., Dori, D., & Wand, Y. (200Nlodelling Off-the-Shelf Information
Systems Requirements: An Ontological Approach. Rements Engineering, 6 (3), 183-
199.

Soffer, P., Golany, B., & Dori, D. (2003). ERP Mdidg: A Comprehensive Approach.
Information Systems, 28(6), 673-690.

Van Gigch, J. P. (1991). System Design Modeling Metamodeling. Kluwer Academic

Publishers.
Warmer, J. & Kleppe, A. (1999). The Object Consitrdianguage — Precise Modeling with
UML. Addison-Wesley.
Wand, Y. & Weber, R. (1993). On the Ontological Eegsiveness of Information Systems
Analysis and Design Grammars. Journal of Infornmaggstems, 3, pp. 217-237.

45

APPENDIX A. BWW ONTOLOGICAL CONSTRUCTS AND THEIR OP M

REPRESENTATION

Table 2.

BWW ontological constructs and their mapping to O8dcepts

Ontological Construct

BWW Explanation

o

PM Represent ation

Thing

A thing is the elementary unit in the ontological
model. The real world is made up of things. A
composite thing may be made up of other things

An instance

Property Things possess properties. A property is modeled An attribute is an object related to another
via an attribute function that maps the thing into object by a characterization link
some value
Class A class is a set of things that possess common An object class
properties
State The vector of values for all attribute functions of a A state (separately modeled for each
thing is the state of the thing attribute)
State law A state law restricts the values of the properties of a | A state law is a specification of the possible
thing to a subset defined by natural or human laws states of an object, including distinction of
transient and persistent states
Event An event is a change of state of a thing, effected via | The event of changing state A to state B is
a transformation (see below) represented by the sequence <State A —
consumption link — process — result link —
state B>
Transformation A transformation is a mapping from one state to A process (class)

another one

Lawful transformation

A lawful transformation defines which events in a
thing are lawful

A set of objects / states linked to a process
by a condition / event / effect / consumption /
instrument link. The process is linked to
another set of objects / states by an effect /
result link

External event

An event that arises in a thing, subsystem or
system by virtue of the action of some thing in the
environment on the thing, subsystem or system

Object / state — event link — process

Internal event

An event that arises in a thing, subsystem or
system by virtue of lawful transformations in the
thing

Process — effect / result link — object / state

Stable State

A state in which a thing, subsystem or a system will
remain unless forced to change by virtue of the
action of a thing in the environment (an external
event)

A persistent state, or any other state, which
is not unstable (see below)

Unstable state

A state that will be changed into another state by
virtue of the action of transformations in the system

State A in the sequence <state A —»
condition / event / consumption link —
process — result link — state B>

is an unstable state

Subclass A subset of a class, defined by a conjunction of An object class, which is related to another
properties class by a specialization link

Composition The things in a composite thing are its composition Composition and decomposition are given

Decomposition A decomposition of a composite thing is a set of by the sequence <object — aggregation link

things such that every component of the composite
thing is either a member of this set or is included in
the composition of one of the members

— set of objects>.
The composite thing is linked at the vertex of
the aggregation symbol and its components

at the bottom

46

APPENDIX B. OPM CONCEPTS AND SYMBOLS

Table 3. Entities — Things and States
Entity Type Entity Symbol

Systemic, informatical object [

Environmental, informatical object -1
Object

Systemic, physical object |:'

Environmental, physical object I—

Systemic, informatical process O

Environmental, informatical process 'GiR)
Process

Systemic, physical process (>N

Environmental, physical process Ny

Regular state -]

Initial state o
State

Final state

Default state N

Table 4. Structural Relations, their OPD symbols, and ORitesgces

Structural Relation Name OPD Symboal OPL Sentence

Aggregation-Participation A consists of B.

I . A exhibits B.
Exhibition-Characterization

Generalization-Specialization Bis an A.

Classification-Instantiation B is an instance of A.

H
= EDH I IS = e .

. A relates to B.
Tagged Structural Link

E A and B are equivalent.
XOR relation —— E.g., A relates to either B or C.
OR relation — E.g., A relates to B or C.

Table 5. Procedural Links, their OPD symbols, and OPL ser@sn
Type Link Name Semantics OPD Symbol OPL Sentence
The process requires the
[r:rl entity, but does not
5 2 Instrument o 'o P requires A.
73 = change it during
(o]

execution.

S)UIT
Bulw.ojsuel)

The process consumes
Consumption @

the entity.

P consumes A.

The process generates < o

(creates) the entity.

Result

P yields A.

The process changes

Effect p
(affects) the thing. o

P affects A.

SYUIT
[euonipuod

The process occurs if
the entity exists (in

Instrument o
some state). The proces o

requires the entity.

P occurs if A exists.

P requires A.

The process occurs if
the entity exists (in

Consumption : ®
some state). The proces

consumes the entity.

P occurs if A exists.

P consumes A.

The process occurs if

the thing exists. The > C

P occurs if A exists.

Effect

process changes P affects A.
(affects) the thing.

— . E.g., P affects either A

o XOR relation -~ 7N

le) or B.

=

=8

Py

@

] —

g' OR relation “_ E.g., P affects A or B.

(%]

48

Table 6. Event links, their semantics and symbols

Event Type Semantics OPD Symbol OPL Sentence
Agent The_ process Is tr_lggered by —@ A handles P.
the intelligent object.
The process is triggered Enter; +® 9 A triggers P when it
State when the object enters or Exit —H® ’_...e enters/exists/either
Change exits the state. The object | Switch: ++® enters or exists st.
may be changed. Any:. —® ,_’e St A triggers P.
The process is triggered
General when the object or process
is changed or cause externall —® ,—® <18 | A triggers P.
Event L .
stimuli. The object may be
consumed or changed.
The process is triaered Start: 2> P invokes P1 when it
. P 99 End: 4> starts/ends/ either
Invocation | when the source process T
starts or ends Border: starts or ends.
' Any: Z> P invokes P1.
A triggers P when st
Minimal or The process is triggered Min: +—0 lasts less than Time/
. when the object violates its | Max: —{] more than Time/less
Maximal - . . R .
minimal or maximal time Extreme: than Time or more
State . . .
Timeout constraints for staying at the than Time.
state. Any: — Timeout of st A triggers
P.
N o Min: +—1 P1 triggers P whe_n it
Minimal or The process is triggered Maoc: —M lasts less than Time/
Maximal when the process violates its ' +—{] more than Time/
L . Extreme: . .
Process minimal or maximal either less than Time
Timeout execution time constraints. | or more than Time.
Any: . .
Timeout of P1 triggers P.
This link triggers P
Min: +—L] when its reaction time
The process is triggered Max: —H] lasts less than Time/
Reaction when the event link violates | Extreme: +—H1 more than Time/
Timeout its minimal or maximal either less than Time
reaction time constraints. or more than Time.
Any: —1 This link timeout triggers
P.
XOR relation . E.g., A trlgg.ers either P
or Q when it changes.
OR relation “ Eg., A tiiggers P or Q
when it changes.

Comment: The OPL sentences in this table are for the event asptwt bhk. For state change and general

event links, an additional OPL sentence, which represemnisotedural aspect, should be added.

49

APPENDIX C. ABSTRACTION ORDER OF PROCEDURAL LINKS

Table 7. Abstraction order of

procedural links

o | »* | > o] > | <—| >| |4 |—»|—w | |||
+HO |+ Ze | T

—0O

—® | —» 2

| -0 | > | | <> | o |—0©® | |—0O|—>|<»|——0|——0
. el e e T I S -y e o e i e N s N B I e I B
.. — | <— | > | —@ ||| B | < | B | < | <> | <

EE
HE T REEEE

6
'
6
'
i
3

'
'
'
'
'
'

- R - | -
- B - |

S

HEEEEEEEE
HEEEEEEEE
HEEEEEEEN

50

'
3
v
!
3
3

—»
—® | —»

3

—»

v

{

BE

B
-
-
R
-
B

