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Abstract 

Two basic requirements from a system’s conceptual model are correctness and comprehensibility. Most 

modeling methodologies satisfy only one of these apparently contradicting requirements, usually 

comprehensibility, leaving aside problems of correctness and ambiguousness that are associated with 

expressiveness. Some formal modeling languages do exist, but in these languages a complete model of 

a complex system is fairly complicated to understand.  

Object-Process Methodology (OPM) is a holistic systems modeling methodology that combines the 

two major aspects of a system—structure and behavior—in one model, providing mechanisms to 

manage the complexity of the model using refinement-abstraction operations, which divide a complex 

system into many interconnected diagrams. Although the basic syntax and semantics of an OPM model 

are defined, they are incomplete and leave room for incorrect or ambiguous models. 

This work advances the formal definition of OPM by providing a graph grammar for creating and 

checking OPM diagrams. The grammar provides a validation methodology of the semantic and 

syntactic correctness of a single Object-Process Diagram.  
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1. Introduction 

Conceptual modeling is the field that is concerned with humans constructing models 

of complex systems at the concept level. We want these models to be simple, but at 

the same time they should also be expressive and formal enough to describe the 

system in detail and without ambiguity.  

There are many ways to conceptually model a system. For small systems this can be 

done with ad-hoc methods – all the people involved get together and agree on a 

modeling technique, which can be graphic or textual, computer-based or hand-written.  

As systems grow larger and evolve over time, these techniques become hard to 

maintain and cannot describe all the things that have to be modeled in the system. 

Furthermore, these models would only be understood by the people that are familiar 

with the modeling technique, adding more problems when changes are involved or 

when the model has to be shared with external stakeholders.  

As systems become more complex, these problems become ever more acute. System 

architects and designers, who create models and use them to communicate ideas, have 

realized that there is a need to establish methodologies that can describe their domain 

of interest, like an Esperanto of modeling.  

To tackle this problem, this work proposes a formal framework for the creation of an 

Object-Process Diagram (OPD)—the graphic modality of Object-Process 

Methodology (OPM) —and its validation, extending the formal definitions in [6] and 

[23], and increasing the formality of the OPM language. The dynamic or execution 

semantics of OPM is outside the scope of this paper. 

The paper is structured as follows: Section 2 provides a general background on 

software engineering as it can be seen as a sub-field of system engineering on which 

all of the described problems occur and where a number of solutions have been 

proposed. Section 3 provides theoretical background on OPM and on graph grammars 

– the mathematical formalism underlying the creation and verification of an OPD. 

Section 4 describes the formalization methodology, and Section 5 concludes the work. 

2. Related Work 

System modeling can be done in a number of ways. The common practice is mixing 

charts and drawing with plain text (which may or may not have a specific syntax), as 
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is done in system architecture frameworks like DODAF [30]. While learning the basic 

methods is fairly easy, their use creates many problems because there is no underlying 

formal methodology for verifying that the model is consistent and does not contain 

internal contradictions. 

On the other extreme there are formal methodologies that can be used for system 

modeling, including abstract state machines, the Z-notation [26], and Petri-nets [1]. 

While these methods have formal definitions, their drawback is that some of them are 

for a specific purpose (Petri-nets for distributed systems) and others (like the Z-

notation) have complex notations or are not sufficiently abstract to define any kind of 

system at different abstraction levels. 

The middle ground between these two approaches is compromised by many 

methodologies, the most popular being the Unified Modeling Language (UML), 

which "is a visual language for specifying, constructing and documenting the artifacts 

of systems. It is a general-purpose modeling language that can be used with all major 

object and component methods, and that can be applied to all application domains and 

implementation platforms." [22]. Although very popular, UML has been criticized for 

its complexity [17] and its lack of precise semantics [10], [11], [29]. To remedy this, 

ongoing effort are made to provide UML (or a subset of UML) with formal semantics 

using graph grammars [19], [13], [33], [12], [18], mathematical notation [3], Abstract 

State Machines [16], Petri Nets [27], Z-notation [4], [21], B language [24] and UML 

itself [28]. A survey of the work done on this field is provided in [20]. 

The descendant of UML – the System Modeling Language (SysML), an initiative to 

customize UML specifically for system engineering (and not software engineering as 

it was intended initially), removes some of the complexity found in UML, but this still 

"does not solve the question of lack of semantics in UML" [31]. 

3. OPM and Graph Grammars 

In this section we briefly introduce OPM and graph grammars, which are the 

mathematical basis for the formal definition of an OPD. 

3.1. Object-Process Methodology 

Object-Process Methodology (OPM) [6] is a holistic modeling approach that 

combines the structure and behavior of the system in the same model, providing full 
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integration of the important system aspects. OPM is an ontologically complete 

modeling language [25] according to the Bunge-Wand-Weber framework [32], a 

theoretical framework for understanding the modeling of information systems. OPM 

is defined by its reflective metamodel [23], which provides further understanding of 

the modeling language and provides a robust basis for code generation, model 

transformation and analysis. In what follows we present the basic concepts of OPM. A 

complete definition of OPM can be found in [6]. 

Since OPM has evolved as a holistic system modeling methodology along with the 

OPM language, hence a formal specification of the language has not been proposed, 

and this work lays out the foundations of such definition, emphasizing its syntactic 

aspects.  

3.1.1. OPM Concepts and Building Blocks 

The primary elements of OPM are entities and links. Entities are the generalization of 

things and states, and things are a generalization of objects and processes – the two 

primary building blocks in an OPM model. In OPM, an object is a thing that exists. A 

process is a thing that transforms at least one object. Transformation is object 

generation or consumption or change in the state of the object. Objects are represented 

in OPM as rectangles, and processes as ellipses. A state is represented as a 

"rountangle" (rounded edge rectangle) within the rectangle of its owning object, as 

shown in Fig 1. 

Object

 
Process

 

Object

State

 

Object Process State 

Fig 1 The OPM Entities 

At any time, a stateful object (object with states) is in a specific state, and the state of 

the object is changed through a process. 

A link is an element that connects two entities and represents a semantic relation 

between them. Links can be of two kinds: structural and procedural. A structural link 

represents a static structural relation between two entities, such as aggregation or 

generalization. A procedural link connects an entity with a process to denote a 

dynamic behavioral flow of information, matter, or energy. A further specialization of 
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a procedural link is an event link, which indicates a specific event that happens at a 

particular moment or when specific preconditions are met. Each link is drawn as a line 

with a special symbol attached to one end or in the middle of the line depending on 

the link type. Some links types are drawn in Fig 2. 

Object1

Object2

 

Object1

Object2

 

Aggregation-Participation Link Generalization-Specialization Link 

Object1 Process1

 
Object1 Process1

 

Consumption Link Instrument Link 

Fig 2 Examples of OPM links 

OPM things have other attributes, for example essence, which can be either physical – 

the modeled element is a physical object in the real world – or informatical – 

something that is not tangible but can be defined and used as a modeling element. 

Examples of physical things are machine, raw material and product; Examples of 

informatical things are computing, account and transaction. 

The common constructs of OPM are shown in the following tables. 
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Entities 

Name Symbol OPL Definition 

T
h

in
g

s 

Object 

 

 

Process 

Object A

B

C

Process D

E

F

 

B is physical. 

(shaded rectangle) 

 

C is physical and 

environmental. 

(shaded dashed 

rectangle) 

 

E is physical. 

(shaded ellipse) 

 

F is physical and 

environmental. 

(shaded dashed 

ellipse) 

An object is a thing that exists. 

  

A process is a thing that transforms 

at least one object.  

 

Transformation is object generation 

or consumption, or effect—a change 

in the state of an object. 

State 

A
S1

B
S1 S2

C
S1 S2 S3

 

A is s1. 

 

B can be s1 or s2. 

 

C can be s1, s2, or 

s3. 

s1 is initial. 

s3 is final. 

A state is situation an object can be 

at or a value it can assume.  

 

States are always within an object. 

 

States can be initial or final. 

 

STRUCTURAL LINKS & COMPLEXITY MANAGEMENT 

Name Symbol OPL Semantics 

F
u

n
d

am
en

tal S
tru

ctu
ral R

elatio
n

s 

Aggregation-

Participation 

A

B C

 

A consists of B 

and C. 

A is the whole, B and 

C are parts. 

B

A

C

 

A consists of B 

and C. 
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Exhibition- 

Characterization 

A

B C

 

A exhibits B, as 

well as C. 
Object B is an 

attribute of A and 

process C is its 

operation (method). 

 

A can be an object or 

a process. 

B C

A

 

A exhibits B, as 

well as C. 

Generalization- 

Specialization 

A

B C

 

B is an A. 

C is an A. A specializes into B 

and C. 

 

A, B, and C can be 

either all objects or all 

processes. 

B

A

C

 

B is A.  

C is A. 

Classification-

Instantiation 

A

B C

 

B is an instance 

of A. 

C is an instance 

of A. 

Object A is the class, 

for which B and C are 

instances. 

Applicable to 

processes too. 

Unidirectional & 

bidirectional tagged 

structural links 
B

re
late

s t
o related

C

A

 

A relates to B. 

(for 

unidirectional) 

 

A and C are 

related. 

(for 

bidirectional) 

A user-defined textual 

tag describes any 

structural relation 

between two objects 

or between two 

processes. 

In-zooming 

A

B
C

 

A exhibits C. 

A consists of B. 

A zooms into B, 

as well as C. 

Zooming into process 

A, B is its part and C 

is its attribute. 

A

B
C

 

A exhibits C. 

A consists of B. 

A zooms into B, 

as well as C. 

Zooming into object 

A, B is its part and C 

is its operation. 

 



8 

ENABLING AND TRANSFORMING PROCEDURAL LINKS 

Name Symbol OPL Semantics 

E
n

ab
lin

g
 L

in
k

s 

Agent Link A B

 
A handles B. 

Denotes that the object is a 

human operator.  

Instrument Link A B

 
B requires A. 

"Wait until" semantics: Process B 

cannot happen if object A does 

not exist.  

State-Specified 
A
S1

B

 

B requires s1 

A. 

"Wait until" semantics: Process B 

cannot happen if object A is not 

at state s1. 

T
ran

sfo
rm

in
g

 lin
k

s 

Consumption Link A B

 

B consumes 

A. 

Process B consumes object A. 

State-Specified 

Consumption Link 
A
S1

B

 

B consumes 

s1 A. 

Process B consumes object A 

when it is at state s1. 

Result Link A B

 
B yields A. 

Process B creates object A. 

State-Specified 

Result Link 
A
S1

B

 
B yields s1 A. 

Process B creates object A at state 

s1. 

Input-Output Link 

Pair 

A
S1

B

S2

 

B changes A 

from s1 to 

s2. 

Process B changes the state of 

object A from state s1 to state s2. 

Effect Link A B

 
B affects A. 

Process B changes the state of 

object A; the details of the effect 

may be added at a lower level.  

3.1.2. Object Process Diagrams - OPDs 

A System Model is an OPM model that defines a system. A system model consists of 

a set of Object Process Diagrams (OPDs). The OPDs in a system model are related 

via in-zooming or unfolding. At any stage in the modeling process, the modeler can 

decide to increase the level of detail for a specific thing in a model, and this is by 

refinement through the in-zooming and unfolding operations. 

This work concentrates on a single-level system model, i.e., a model that is 

completely specified in a single OPD, with no in-zooming or unfolding operations.  
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3.2. Graphs and Graph Grammars 

Graph Grammars (or Graph Transformations) is a field of Graph Theory that 

formalizes the creation or transformation of graphs using predefined transformation 

rules. Following the definitions in [5] and [9], the initial notion below is that of  a 

graph. 

Definition 1 Directed Typed Graph 

 A Directed Typed Graph (also known as Directed Labeled Graph), over two label 

alphabets V  and E , is a tuple 
GGGG

EV lelvtsGGG ,,,,,  where: 

 VG  is the set of vertices (or nodes) 

 EG  is the set of edges (or arcs) 

 VE

GG GGts :,  are the source and target vertex function for each edge, and 

 VV

G Glv :  and EE

G Gle :  are the vertex and edge type (label) 

functions respectively. 

A graph is normally represented visually, as shown in Fig 3. 

A

B

C

1

3

2

4

 

Fig 3 Example of a Directed Typed Graph 

Definition 2 Object-Process Diagram 

Based on the above definition of Directed Typed Graph, an Object-Process Diagram 

(OPD) is a Directed Typed Graph over the following two alphabets: 

 OPM

V {Object, Process, State} – the node alphabet. 

 OPM

E {Object-State, Tagged, Aggregation-Participation, Exhibition-

Characterization, Generalization-Specialization, Classification-Instantiation, 

Agent, Instrument, Consumption, Result, Effect, Input-Output pair, Invocation, 

Event, Consumption Event, Condition, Exception} – the edge alphabet. 

Although this is the formal notation for the OPM graph, its graphical OPD 

representation is more straightforward and easier to understand, so this is the notation 

used throughout this work. Furthermore, OPM states are not stand-alone entities and 

are drawn inside the object that owns them. The object ownership relation is 
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abstracted by adding a new type of link, Object-State, which denotes that a state 

belongs to the object. Since the notation in OPM is more expressive and is part of the 

OPD syntax, we use it, bearing in mind that it can be changed to the formal Object-

State link representation by detaching the state from the owning object, moving it out 

of the object, and adding a link between the object and the detached state.  

An OPM model is a graph of graphs, where each node in the model is an OPD and the 

links between these nodes are defined by the refinement/abstraction (in- zooming/out-

zooming or unfolding/folding) relations between the OPDs. 

Before we delve into the formalisms of graph grammars, we need to define the 

following concepts. 

Definition 3 Graph Morphism 

 Let 
GGGG

EV lelvtsGGG ,,,,,  and 
'''' ,,,,','' GGGG

EV lelvtsGGG   be two 

graphs over the same label alphabets V  and E . A Graph Morphism 

': GGf   is a pair of functions EEeVVv GGfGGff ':,':   such that: 

 EGe , ))(())(( ' efsesf e

GG

v   (source node preservation) 

 EGe , ))(())(( ' eftetf e

GG

v   (target node preservation) 

 VGv , ))(()( ' vflvvlv v

GG   (node label preservation) 

 EGe , ))(()( ' efleele e

GG   (edge label preservation) 

Graph morphism is a function that matches two graphs, preserving its structure (nodes 

and edges) and the labels on the edges. 

Definition 4 Subgraph 

 Suppose A , B , and 'B  are sets, such that BB ' , and there exists a mapping 

ABm : . The operator '' Bmm   defines a new mapping 'm  such that 

)()(',' bmbmBb  . 

 Let G  be a graph as defined above. A subgraph 
SSSS

EV lelvtsSSS ,,,,,  of G

, written GS  , is a graph having VV GS  , EE GS  , 
ES

GS ss  , 
ES

GS tt  , 

VS

GS lvlv   and 
ES

GS lvle  . 

Simply put, a subgraph is a part of a graph that is also a valid graph. 

Definition 5 Partial Graph Morphism 
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 A partial graph morphism : 'm G G  is a graph morphism of a subgraph of G  to 

'G . 

Having defined the above terms, we can now turn to the definitions of the graph 

grammar needed in this work. The basic operation in graph grammars is graph 

transformation, defined by a rule. There are two major approaches to defining 

transformation rules: the double pushout approach (known as DPO) and the single 

pushout approach (known as SPO). We use SPO since it is simple to define and 

understand and we have no need for the strong properties that the DPO approach 

features. 

Definition 6 SPO Production Rule 

 A production RLp r:  consists of a production name p  and a partial graph 

morphism r , called the production morphism. L  and R  are graphs called the left-

hand graph and the right-hand graph, respectively. 

The left-hand graph of the production describes the context needed for the production 

to be applied, and the right-hand graph shows how the original part of the graph will 

look like after the application of the production rule. The morphism r  specifies which 

element (node or edge) in the left-hand graph is matched with which element in the 

right-hand graph. To apply this production to a graph, each element missing in the 

right-hand graph is deleted, and if this deletion causes dangling edges, they are 

deleted as well. Elements missing in the left-hand graph that exist in the right-hand 

graph are added. Formally, the application of a production is defined as follows. 

Definition 7 Production, Derivation 

 A match for RLp r:  in some graph G  is a graph morphism GLm : . 

Given a production p  and a match m  for p  in graph G , the direct derivation 

from G  with p  at m , written HG
mp,

 , is done as follows: 

 Using morphism m , delete vertices and edges of G  that occur in L  and do 

not occur in R . 

 Add to G  all vertices and edges that occur in R  but do not occur in L . 

 If a node or an edge is both kept and deleted, solve the conflict by deletion (a 

node or an edge is kept and deleted if it has two pre-images in L, one in R and 

the other not in R). 

 Delete all dangling edges from G . 
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Example 1  

We demonstrate the basic graph grammar concepts on a small OPD. The grammar's 

set of production rules is given in Fig 4. Recall that an OPM object is denoted as a 

rectangle and a process—as an ellipse. 

Production 1: 

Consumption Link Insertion 
P

O

 

 

P

O

 

Fig 4 The production of Example 1  

The initial graph for our example is 1G , shown in Fig 5. 

1G  = 

Object1

Object2

Object3

Process1

Process2

 

Fig 5 Initial graph of ‎Example 1 

Let us apply Production 1 – Consumption Link Insertion on 1G . The first step is to 

find a subgraph of the graph 1G  that matches the left-hand side of Production 1.  

There are six possible matches: {Object1, Process1}, {Object1, Process2}, {Object2, 

Process1}, {Object2, Process2}, {Object3, Process1} and {Object3, Process2}. We 

choose to apply the rule on {Object1, Process1}, resulting in graph 2G , shown in Fig 

6. 

2G  = 

Object1

Object2

Object3

Process1

Process2

 

Fig 6 ‎Example 1 graph after application of Production 1 – Consumption Link Insertion 
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Using derivations, we can describe how graphs are legally transformed into other 

graphs. However, specifying when these transformations can be applied is limited by 

the positive condition in the left-hand graph. This is extended with application 

conditions, which specify contexts in which the transformation can be applied. 

To add application conditions, we specify not just one left-hand side graph L , but a 

set of graph morphisms }ˆ{ LL l  called constraints [15], [8], [14]. Each constraint 

represents a structure on the left-hand graph that must exist for positive constraints 

and must not exist for negative constraints. 

Definition 8 Application Conditions 

 An application condition over a graph L  is a finite set }{ QLA l  of graph 

morphisms of the form QL l  called constraints. 

 Let RLp r:  be a production, QLa l:  a positive constraint, and 

GLm :  a match for L in graph G. We say that m  satisfies a , denoted by 

am |  , if there exists a graph morphism GQn :  such that mln  , where   

is the mathematical function composition operator, which means that we apply 

morphism l  to L  and then we apply morphism n  to the result. 

 A negative constraint is defined as a regular constraint for which morphism n  

must not exist. 

 A match m  satisfies an application condition A  over L , denoted by Am |  if it 

satisfies all the constraints Aa . 

Usually, the specified constraints are negative, since the positive constraints can be 

modeled in the left-hand side graph of the production. Negative constraints can also 

be embedded in the left-hand side graph of the production, where the common 

notation is to draw them inside a shaded area, as shown in ‎Example 2. 

Definition 9 Conditional Production 

 A conditional production ),(ˆ ARLp p  is a pair consisting of a partial graph 

morphism p and an application condition A  over L .  

Definition 10 Direct Conditional Derivation 

 Production p̂  is applicable to graph G  at GL m  if Am | . This is called a 

direct conditional derivation, denoted as HG
mp,ˆ

 . 

Example 2  
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Continuing with the transformation in ‎Example 1, we revise Production 1 to include a 

negative constraint, which removes the possibility of creating duplicate consumption 

links between two entities. The result is shown in Fig 7. 

Production 1n: 

Consumption Link Insertion 
P

O

 

 

P

O

 

Fig 7 Production 1 with a negative constraint 

The rephrased Production 1, called Production 1n, simply means that a consumption 

link can only be added if a consumption link between the two entities does not yet 

exist. The addition of the negative constraint does not change the resulting graph in 

Fig 6, but it rules out the option (Object3, Process2) from the set of possible 

matches. 

4. Formal Validation of an OPD using Graph 

Grammars 

There are two possible approaches to maintaining the syntactic correctness of an 

OPD: 

1) Proactive Verification: Maintaining syntactic correctness of the OPD at modeling 

time by proactively verifying that each modeling operation is legal as it is being 

executed by the system designer, so the model is guaranteed to be syntactically 

correct by construction at any time. This approach is fairly complicated and may 

encumber the user, because there may be intermediate situations in which the 

model needs to be temporarily inconsistent. 

2) Retroactive Verification: Verifying retroactively that the OPD has remained 

syntactically correct after applying one or more modeling operations to the OPD. 

Our syntactic correctness checking algorithm combines the proactive and retroactive 

verification approaches. We limit the OPD construction process by defining 

transformation rules stipulating what is and what is not permitted in OPD construction 

while allowing for temporary inconsistencies. 

This section shows part of a graph grammar for creating and validating a system 

model in a single OPD. The zooming and folding OPM capabilities are not handled 

since for syntactic purposes an OPM model that consists of many OPDs can be 
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recursively converted into a single OPD by "flattening" the OPD hierarchy via 

successive model element assignments without loss of model information. The 

complete definition of the OPD graph grammar can be found in [2]. 

4.1. OPD Creation – Sample OPD Graph Grammar Productions 

The creation of an OPD starts with an empty graph, and from this empty graph any 

number of productions is applied until the desired model is achieved. Some of the 

productions that can be used to create an OPD are shown in Fig 8. Note that T  is the 

symbol of a Thing (Object or Process). For example, Production 1, Simple Thing 

Creation, states that if Thing T does not exist, it can be created. Also note that in some 

cases links are modeled using wildcard notations, meaning that the link can be 

matched either to any link kind (when the links is drawn as a straight line), to 

structural links (a straight line with an ‘s’ in the middle) or procedural links (a straight 

line with a ‘p’ in the middle. 

T

 

 T

 
 Production 1 Simple Thing Creation 

     

O

S

 

 
O

S

 

 Production 2 New State Creation  

EW      

T1

T

 

    Production 3 Thing Removal 

     

O1

O2

s

 

 

O1

O2

 

 Production 4 Object-Pair Aggregation-

Participation Link Creation 
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T1

T2

s

 

 

T1

T1

 

 Production 5 Exhibition-Characterization Link 

Creation 

     

O Pp

 
 O P

 
 Production 6 Agent Link Creation 

     

T1 T2

 
 T1 T2

 
 Production 7 Link Removal 

Fig 8 Sample Productions of the OPD graph grammar 

4.2. OPD Validation 

Validation of an OPD employs the OPD Abstraction algorithm, defined below. The 

validation is done by searching for illegal constructs during the abstraction process. If 

the algorithm does not find any illegal constructs, then the OPD is valid, at least 

syntactically.  

As noted, this work is applicable to a single OPD. A single OPD may contain a 

complete OPM model or only part of a greater system model with other 

interconnected OPDs. 

The word abstraction is used in this context differently than in OPM, therefore it 

needs to be clarified. Abstraction is used to denote reduction of the amount of 

syntactic and semantic information in the model without contradicting the original 

semantics of the model. In the context of an OPD, an element of the OPD can be 

abstracted into another element if the new element does not contradict the meaning of 

the original element, and no other element can abstract the original element being 

abstracted without losing more semantic information. 

The best way to understand this is by an example, as shown in Fig 9. 

O1 P1

 
 O1 P1

 

Fig 9 Abstraction of a simple OPM link 

The left hand side diagram of Fig 9 shows that the object O1 is an instrument of the 

process P1. The semantics of this OPD is that O1 is required for P1's execution. In the 

right hand side diagram the instrument link is changed to an effect link. Semantically, 
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an effect link also denotes that P1 requires O1, but it adds to this that P1 affects O1 

by changing its state. There is loss of information, because the effect link has a 

broader definition. However, since the effect link does not contradict the semantics of 

the original instrument link, the former link can abstract the latter. 

A more complex and realistic example is shown in Fig 10. 

O1

O2

P1

 

 

O1

O2

P1

 

 O1 P1

 

Fig 10 Abstraction of the link of a part 

The diagram on the left hand side of Fig 10 shows that O1 consists of O2, and O2 is 

consumed by P1. The middle diagram shows an intermediate step in the abstraction 

process, in which O1 is affected (its state is changed) by P1. Since O1 consists of O2, 

the semantics of the original diagram is not contradicted, but information on the 

specific change done to O1, namely, the consumption of its part O2, has been lost. 

The OPD on the right hand side reduces the amount of information even more by 

deleting O2. The new diagram does not contradict the original diagram and it still 

contains a “watered-down” version of the semantics of the original OPD. 

The abstraction of the OPM Model is done by successively applying graph grammar 

productions to the OPD until no further abstraction can be done (no production rule 

can be applied). We call the resulting model the final abstraction of the OPD. Even 

though the final abstraction of the OPD is valid as an OPM model, it must be checked 

by the modeler, because only the modeler can validate that the semantics of this 

model matches the original semantics she or he wanted it to represent.  

This section is divided as follows: Subsection 4.2.1 provides basic definitions needed 

in the algorithm definition, Subsection 4.2.2 shows some Graph Grammar productions 

used in the abstraction algorithm, Subsection 4.2.3 shows some Illegal Constructs 

used by the algorithm, Subsection 4.2.4 explains the logic behind Generalization and 

Classification abstraction and how it is done, and Subsection 4.2.5 presents the full 

abstraction algorithm and an example execution of it. 
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4.2.1. Definitions and Notation 

1. Temporary Link: The abstraction algorithm defined below works iteratively, 

trying to abstract one thing in every iteration. During the abstraction process, 

there are cases when new links are inserted into the OPD. These are called 

temporary links and are modeled with a curved connection, as shown in Fig 

11. 

O1 P

 

 
O1 P

 

Fig 11 Temporary instrument link (left) and result link (right) 

The difference between temporary links and regular links is that during the 

one algorithm iteration the type of temporary links may be changed by the 

abstraction algorithm. For example, suppose the algorithm received the 

context shown in the left-hand graph of Fig 12. This can occur if P uses 

another aggregate of O1 as an instrument (not shown in the drawing) which 

was previously abstracted. Since the instrument link from O1 to P was created 

by the abstraction algorithm, it can be further abstracted to an effect link as 

shown in the right-hand graph of Fig 12. 

O1

O2

P

 

 

O1

O2

P

 

Fig 12 Example of uses of temporary link 

In contrast, if the instrument link was not temporary, but rather a modeling 

decision (made by a modeler), the algorithm would not be able to change its 

type and we would have an illegal construct in the model, This is so because a 

change of a part cannot be abstracted by the whole being an instrument, since 

an instrument is by definition an enabler that cannot be changed. 

2. Structural Parent: the structural parent of a thing 1t  is a thing 2t  that is a 

source of a structural relation ending at 1t  (relations like Generalization and 

Instantiation are structural relations). The set of structural parents of a thing 1t  

is denoted by )( 1tSP . 
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3. Modeling Height: Modeling height of a thing denotes how far it is from its 

farthest ancestor. A thing 1t that has no structural parent is defined to have 

height 0: 0)( 1 th . The height of any other thing in the OPD is defined as 

))((max(1)( iji tSPthth  . Fig 13 shows an example of the modeling height 

in a sample OPD. 

O1

O2

O3

O4

P3

h=1

h=0

h=1

h=2

P1

h=0

h=2

 

Fig 13 Modeling heights of things in a sample OPD 

4.2.2. Graph Grammar Productions for OPD Abstraction 

The OPD Abstraction productions are divided into four groups: 1) State Change 

Abstraction: abstraction of links that start and end at a state, 2) State-Specified Link 

Abstraction: abstraction of links that either start or end at a state, 3) Procedural 

Abstraction: abstraction of procedural links, and 4) Thing Removal: removing things 

that have no more procedural or outgoing structural links. This grouping was created 

because the abstraction algorithm, specified below, must apply the production groups 

in a specific order.  

Following are examples of the OPD abstraction productions with a short explanation 

of the logic behind them. Note that this is only a small subset of all the productions. 

The complete set of productions can be found in [2]. Classifying the productions into 

the groups shown above, Production 1 is part of the State Change Abstraction group, 

Productions 2-5 are part of the Procedural Abstraction Group, and Production 6 is part 

of the Thing Removal Group. 

Production 1 – State Change Abstraction: Changing an input-output links pair into 

an effect link (see Fig 14). This can be an intermediate step to remove (abstract) the 

object’s state. 
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O
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P

 

 PO

S1

S2

 

Fig 14 State Change Abstraction production 

Production 2 – Promotion of Part Consumption to Aggregate Effect: 

Consumption of a part object affects the aggregate object. Since in the diagram there 

is no specified relation between O1 and P, the fact that it is affected by P must be 

added to the diagram. After this is done, the link between O2 and P is removed. The 

production is shown in Fig 15. 

O1

O2

P

 

 

O1

O2

P

 

Fig 15 Promotion of Part-Consumption to Aggregate Effect production 

Production 3 – Part Consumption Removal while Abstracting Instrument to 

Effect: Consumption of a part means change to the aggregate. Since in Fig 16 the link 

between O1 and P was created by the abstraction algorithm, its kind can be changed 

as long as its new kind expands the meaning of the original link. Here, the instrument 

link between O1 and P can be abstracted to an effect link, and then removed. 

O1

O2

P

  

 

O1

O2

P

 

Fig 16 Part Consumption Removal while Abstracting Instrument to Effect production 

Production 4 – Part Effect Removal via Result: In Fig 17, the process P on the left 

hand side OPD yields O2 as a part of O1, so the result link from P to O2 can be 

removed. The production also uses a shorthand notation for the link between O1 and 

P, meaning that it can be applied regardless of whether the link is temporary or not. 
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O1
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P

 

Fig 17 Part Effect Removal via Result production 

Production 5 – Part Effect Removal via Agent: An agent link implies optional 

effect to the object, therefore the aggregate process P1 implies optional effect to O, 

which abstract effect caused by P2, so the link between P2 and O is removed. The 

production is shown in Fig 18. 

P1

P2

O

 

 

P1

P2

O

 

Fig 18 Part Effect Removal via Agent production 

Production 6 – Thing Removal: If the thing being considered for removal has no 

procedural link or outgoing structural links, it can be removed from the OPD. Note 

that the thing removed must be matched to T1. The production is shown in Fig 19. 

T1
Thin

g1
T2 p

T3

s

T4

s

 

 T4

 

Fig 19 Thing Removal production 

4.2.3. Illegal Constructs 

Illegal constructs are OPM constructs that create invalid or contradictory semantics in 

the model. If one of these constructs is found in the OPD, or is created by the 

abstraction algorithm, the OPD becomes invalid. 

Below we show a number of illegal OPM constructs, which can occur in the local 

context of the abstraction algorithm. Next to each construct is a brief explanation on 

the rationale behind the illegality of the construct. 
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Illegal Construct 1 – Part Consumption and Aggregate Instrument: The 

consumption link in Fig 20 between P and O2, that signifies change to O1, 

contradicts the instrument link between O1 and P, which signifies no change to O1.  

O1

O2

P

 

Fig 20 Part Consumption and Aggregate Instrument illegal construct 

Illegal Construct 2 – Exhibitor Effect and Attribute Result:  

The effect link between P1 and O in Fig 21 is less specific than the fact that O is 

created by an attribute of P1.  

P1

P2

O

 

Fig 21 Exhibitor Effect and Attribute Result illegal construct 

4.2.4. Generalization and Classification Abstraction 

The generalization-specialization relation can link two objects or two processes. 

When two processes are related with a generalization-specialization link, the 

abstraction process must validate that the “signature” or "API"
1
 of the source of the 

relation is maintained in the target of the relation. The signature of a process consists 

of all incoming and outgoing procedural links, including the object types that are at 

the ends of these links. An example of an OPD that is invalid because the signature of 

a process is not inherited correctly is shown in Fig 22. 

2D

Figure

Square

Paint

Paint on 

Screen

Canvas

Screen

 

                                                 

1
 API – An application programming interface (API) is a source code interface that an operating system 

or library provides to support requests for services to be made of it by computer programs 
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Fig 22 Invalid signature example 

Process Paint requires 2D Figure and affects Canvas. Paint on Screen is a Paint, 

therefore it must conform to the same signature as Paint, meaning that it must require 

an object of type 2D Figure and must affect an object of type Canvas. Since this is 

not the case, this OPD is invalid.  

The signature of the process must be maintained, but may be expanded by creating 

new links in addition to the links that already exist in the original signature. 

The signature validation relies on the type of a thing. Each modeled thing in OPM has 

at least one type
2
, and the OPM generalization or classification relations create a type 

hierarchy. For each thing: 

 Each modeled thing is always of a primitive type. A modeled process named 

 pname  is of type ptypepname _ . A modeled object named  oname  

is of type otypeoname _ . The primitive type of a thing is denoted as 

)_(  namethingT . 

Using the OPM generalization-specialization relation, we can model the fact that one 

thing specializes another thing, inheriting its features (i.e., attributes and operations), 

relations and states
3
. This means that the specialized thing becomes of the type of the 

general entity. This creates the Type Closure of a thing, denoted by 

)_(  namethingTC , such that: 

 )1()2()1(
21













thingTthingTCthingTC
thingthing




, where 

 21 thingthing   denotes that thing1 is a thing2, as modeled in OPM using 

the generalization-specialization relation. 

 If thing1 is an instance of thing2, then 

)1()2()1(  thingTthingTCthingTC  . 

For example, suppose P1 and P2 are two processes. From ‎the definition above, 

process P1 is of type P1_ptype and P2 is of P2_ptype. Furthermore, suppose that P1 

                                                 

2
 The word type rather than class has been selected since class is used in most languages to define 

objects, and this might confuse the reader. 

3
 The Generalization-Specialization relation in OPM is usually called inheritance in modern object 

oriented languages. 
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and P2 are connected with a Generalization-Specialization link, where P1 is the 

source of the link and P2 is the target of the link. Then P2 is also of type P1_ptype. 

Using the above definitions, the signature consistency validation verifies that all 

processes that are part of a generalization-specialization relation have the same 

signature. The algorithm checks each procedural link of the parent in the relation, and 

searches for a matching link in the child of the relation. When such link is found, it 

verifies that the type closure of the connected element in the child’s relation matches 

at least one element in the type closure of the connected element in the parent’s 

relation. The algorithm succeeds if all of the links in the parent are valid. 

4.2.5. OPD Abstraction and Validation Algorithm 

As stated above, the OPD Abstraction and Validation algorithm tries to abstract the 

OPD as much as possible, while continuously checking that the syntax and semantics 

of the OPD remain valid. 

The first step of the algorithm is the signature consistency validation. This must be 

done before the abstraction of the OPD since the abstraction may change and remove 

the links in the graph invalidating the API. 

The second step of the algorithm is the core of the abstraction process. The algorithm 

runs on all of the things ordered by their modeling height descending. The result of 

each iteration can be: (1) removal of the processed thing, if all of the outgoing links 

from the thing were removed by the abstraction productions; (2) marking the thing as 

processed if the algorithm could not remove it but did not find any illegal construct 

after all abstraction productions, or (3) finding an illegal construct in the context of 

the processed thing. 

The abstraction process is done in three steps. The first step is to abstract all of the 

states of the thing (if it has any). This is done in order to transfer all the links to the 

thing being abstracted. For example, suppose an object is consumed by a process 

only when it is in a specific state. The abstraction process would cause the model to 

show that the process consumes the object, regardless of its current state. As 

expected, some information is lost, but the “strongest” consequence of the link, 

namely that the process consumes the object, is maintained. 

The algorithm then tries to transfer all the links that originate from the current thing 

to its parent, using procedural abstraction productions. Note that because there are 

many (116 to be exact) abstraction productions, specifying them all in the algorithm 
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would make it unreadable, so they have all been called Procedural Abstraction. Their 

classification is refined in [2] using link types as the basis for classification. The 

purpose of this step is to remove as much information as possible from the thing 

being abstracted, up to the point that it is not the source of any procedural link. As in 

the state abstraction process, this may cause some information loss. For example, 

suppose object O1 consists of object O2 and O3, and P1 is a process that consumes 

O3. When object O3 is abstracted, the consumption link to P1 is transferred so it 

starts at O1 while also being changed to an effect link (since this is the defined 

semantic of consumption of an aggregate). After this abstraction, the model is still 

correct, but less informative. 

A description of the algorithm in pseudo code follows. 

 Input: OPD 

 Algorithm: 

1. Validate all Process signatures by applying the Error! Reference source not 

found. algorithm. If validation fails, stop and return failure on signature 

validation. 

2. While OPD contains things that have not been processed: 

2.1. Of all the things in the current OPD select thing with max(height(thing)) and 

no outgoing structural links. 

2.2. Transform all Temporary Links that start at thing to Regular Links. 

2.3. Apply State Change Abstraction productions to thing if applicable, as many 

times as possible. 

2.4. Apply State-Specified Link Abstraction productions to thing if applicable, as 

many times as possible. 

2.5. Apply Procedural Abstraction productions to thing if applicable, as many 

times as possible. 

2.6. Check Illegal Constructs on thing. If at least one illegal construct exists, stop 

and return failure on thing. 

2.7. Apply Thing Removal production to thing if applicable. If the production is 

not applicable, mark thing as processed. 

3. Transform all temporary links in the OPD to regular links. 

4. End. 
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The best way to understand the algorithm is through an example, where we validate 

SD1 of the ABS Ford system model example provided by OPCAT [7] (the OPM 

modeling tool) shown in Fig 23 ABS Ford System Model SD1Fig 23. 
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Fig 23 ABS Ford System Model SD1 

The algorithm selects a thing with the highest height to start the abstraction. For 

example, suppose Brake Assembly is selected first. The first production that can be 

applied is State-Change Abstraction, as shown in Fig 24. 

Brake 
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Fig 24 State change abstraction on Brake Assembly 

State-Specified Link Abstraction is then applied, as shown in Fig 25. 
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Fig 25 State-Specified Link abstraction on Brake Assembly 

The next step in the algorithm is Procedural Abstraction. In this step, the procedural 

links that connect Brake Assembly to all other things in the diagram are migrated as 
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temporary links to its structural parent, which is ABS. The result of this is shown in 

Fig 26. 
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Fig 26 Example diagram after initial abstraction of Brake Assembly 

No illegal constructs were detected on Brake Assembly, so the next step is Thing 

Removal, which removes Brake Assembly from the diagram with the result show in 

Fig 27. 
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Fig 27 OPD diagram after first round of the abstraction algorithm 

Since at each round of the algorithm a thing is removed or marked as processed, and 

there is a limited number of things in the OPD, the algorithm will finish either when 

there is no thing in the OPD not marked as processed, or if there were illegal 

constructs found in the way. 

The final result of the algorithm after a number of rounds is shown in Fig 28.  
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Fig 28 Final abstraction of the example diagram 

Even though the algorithm validated the OPD and found it syntactically and 

semantically correct, the final result of the algorithm provides the modeler with the 

most simplified version of the system, which she or he must examine to see if the 

abstract system model reflects the modeler’s intent. 

5. Conclusions 

In this research we have formally defined the syntax of an OPD and a method for the 

creation and verification of OPDs. This formalization provides OPM with a solid 

software engineering foundation, as the syntactic and some of the semantic 

correctness of models and diagrams can be verified. This formal verification is critical 

as we wish to create robust and verifiable systems. 

A formal and exact definition of the syntax and the semantics of OPM opens the way 

for such desirable features as validation and automatic testing of systems at design 

time. This formalism also supports system lifecycle management. As a system is 

changed, these changes can be done in the system model and can be compared 

semantically to the original model to detect what of the model were affected by the 

change. This can greatly reduce the amount of testing needed when new versions of a 

system are produced.  
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