
 1

Modeling Events in Object-Process Methodology and in Statecharts

Iris Reinhartz-Berger, Arnon Sturm, Dov Dori
Technion – Israel Institute of Technology

{ieiris@tx, sturm@tx, dori@ie}.technion.ac.il

Complex systems are often reactive, i.e., they continuously respond to external and internal
stimuli (events) and may have time constraints. When modeling such systems, the designer
should be able to determine the system's behavior, as well as its flow of control. One common
way for expressing control flows is via Event-Condition-Action (ECA) rules [1]. These rules
specify for each action (process) its triggering event and its guarding condition. The action is
executed when the triggering event occurs, if and only if the guarding condition is fulfilled at
that time. In this paper, we specify how two modeling approaches, Statecharts and Object-
Process Methodology (OPM), model the ECA paradigm and compare the expressive power of
the respective models. We examine the types of supported events, how these event types are
integrated into complete system specifications, and what are the potential implications on the
code derived from each one of the specifications.

Statecharts [3] is an extension of the conventional formalism of state machines and
diagrams. It can be used either as a stand-alone behavioral description or as part of a more
general analysis and design method, such as UML [5]. Statecharts is based on states, which
specify a situation in which a system (or an object) exists, and transitions, which enable the
system to move from one state to another. A transition has the form of an ECA rule, i.e.,
syntactically formulated as "event [condition] | action".

OPM [2] is an integrated modeling method that unifies the system function, structure, and
behavior within one frame of reference. The building blocks of OPM are objects, processes,
states, and structural and behavioral links. Each OPM specification consists of a set of
graphical representations, called Object-Process Diagrams (OPDs), and a corresponding
natural language description, called Object-Process Language (OPL) script. The translation
from an OPD set to the corresponding OPL script and vice versa is done automatically, so the
designer can interchangeably work on the graphical or textual version of the specification.
OPM/T [4], which is an extension of OPM for specifying reactive and real-time systems, has
applied the ECA rules to OPM by defining triggering events, guarding conditions, temporal
constraints, and timing exceptions. In this paper, OPM refers also to its OPM/T extension.

Table 1 provides a Statecharts model and an OPM model (both an OPD and an OPL
sentence) for each one of the common event types. Comparing the models suggested for state
entrance, state exit, activity start, activity stop, condition fulfillment, condition violation, and
external events, we found no significant differences in the model complexity and accuracy.
However, there are some interesting differences that make each method suitable for particular
tasks.
� In Statecharts the behavior of the system occurs in the states, and is expressed by text

below the line separating the state name and the "do/" command. In OPM, which models
structure and behavior in the same model but with different symbols, the behavior is
executed in the processes, which act to change the states of objects.

mailto:{ieiris@tx
mailto:sturm@tx
mailto:dori@ie

 2

Table 1. Modeling events in Statecharts and OPM

Event
Type Statecharts Model OPM Model: OPD(top)

OPL sentence (bottom)

State
Entrance

S’ triggers Triggered Process when it enters s3.

State Exit

S’ triggers Triggered Process when it exits s3.

State
Change

S triggers Triggered Process when its state changes.

Activity
Start

Invoking Process triggers Triggered Process when it
starts.

Activity
Stop

Invoking Process triggers Triggered Process when it
stops.

Activity
Timeout

Invoking Process triggers Min Constraint Handling
when it lasts less than Tmin and Max Constraint
Handling when it lasts more than Tmax.

Condition
Fulfil-
ment

C triggers Triggered Process when it becomes true.

Condition
Violation

C triggers Triggered Process when it becomes false.

State
Timeout

S triggers Min Constraint Handling when s1 lasts less
than Tmin and Max Constraint Handling when s1
lasts more than Tmax.

External
Event

Event Generator, which is environmental, triggers
Triggered Process.

s1 s2
do/ TriggeredProcess

started(Invoking Process)

s1
s2

do/ TriggeredProcess

stopped (Invoking Process)

s1
s2

do/ TriggeredProcess

true(c)

s1 s2

do/ TriggeredProcess

false(c)

s1
s2

do/ TriggeredProcess

Event

s
s2s1

s'

do/ TriggeredProcess

entered (s1) or entered (s2)

s1
s2

do/ TriggeredProcess

entered(s3)

s1
s2

do/ TriggeredProcess

exited(s3)

 3

� In Statecharts there is a clear coupling between a state and the activity performed within it,
so it is easy to detect the system behavior within a single state. However, it is difficult to
follow the event sources. In OPM, the event generating source is explicitly specified,
enabling the designer to trace the events associated with a specific entity (object, state, or
process).

� OPDs use less text and more graphics, and the semantics is made clear by the
corresponding natural OPL sentence, an element that does not exist in Statecharts.

� The state change, activity timeout, and state timeout event types are modeled in OPM
more naturally, since they are built into the model. Modeling these events in Statecharts
required the definition of composite events, conditions, actions, and synthetic
states/transitions. Thus, while modeling the state change event in Statecharts, the
redundant state s had to be added in order to specify a transition that is enabled whenever
one of s sub-states is entered. In the timeout events, an additional activity of entrance (t1)
and exit (t2) time recording had to be added in order to be able to compute the time t2 – t1
spent at state s1 which is required for the MinConstraintHandling activity in case
t2 – t1 < Tmin. The corresponding maximal time constraint is handled with the build-in
timeout mechanism of Statecharts with a complementary condition check.

� OPM supports defining reaction timeout constraints on each one of the event types. A
reaction timeout constraint expresses temporal restrictions on the minimal and maximal
time that can elapse between the event occurrence and the beginning of the triggered
process (activity).

Figure 1. Adding reaction timeout constraints to the external event model

For example, Figure 1 specifies the external event model with reaction timeout constraints.
Triggered Process should normally begin its execution between Tmin and Tmax after the
Event Generator has created an event (e.g., an external stimulus). If this process is about to
begin before Tmin, then the Min Constraint Handling process is activated. Similarly, if
Triggered Process does not begin after Tmax, then Max Constraint Handling process is
activated. Modeling this constraint in Statecharts is not straightforward.

As the examples in Table 1 demonstrate, OPL reads as natural language and thus it
enhances the readability of the graphical models, making it easy for humans who are not
familiar with OPM graphical notations and their semantics to interpret the semantics
correctly. At the same time, OPL provides a solid infrastructure for automated code
generation, which follows the common implementation of ECA rules, when dealing with
events. In particular, it separates the ECA components into two groups: the triggering
elements and the executing ones. The triggering elements are the event initiator (object, state,
or process) and the event specification (denoted by an event link). The executing element is a
wrapping process, which executes the original activity if and only if the preconditions are

 4

fulfilled. These preconditions can be either for a normal process execution or for the
execution of a time exception handling. We plan to provide OPM with an implementation
generator which will follow the Statecharts code conversion rules. Figure 2 shows an example
of an OPD that models the general structure of an ECA rule, its OPL counterpart, and the
corresponding pseudo code of the wrapping process.

Figure 2. An implementation generation example

In summary, OPM's visual and textual representations provide a means for
expressing various event types in a formal yet intuitive way, which compares
favorably with Statecharts. The textual representation of OPM models (i.e., OPL) can
be verified by the system customers and compared against the requirements they
expressed. At the same time, the OPL script explicitly specifies event implementation
concepts and is therefore amenable to automated code generation. In other words,
OPL bridges the requirement specification and the implementation stages of the
system lifecycle development. As a future work we plan to write an OPL compiler
that will generate executable code. It will be able to generate code for the various
event types presented in this paper, as well as supporting other modeling aspects that
can be expressed in OPM but not in the stand-alone version of Statecharts (e.g.,
communication between objects, system structure, and architecture).
References

[1] S. Chakravarthy, SNOOP: An expressive Event Specification Language for Active
Databases, Technical Report UF-CIS-TR-93-007, pp. 1-25, 1993.

[2] D. Dori, Object-Process Methodology - A Holistic Systems Paradigm, Springer Verlag,
Heidelberg, New York, 2002.

[3] D. Harel, Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming, 8(3), pp. 231-274, 1987.

[4] M. Peleg and D. Dori, Extending the Object-Process Methodology to Handle Real-Time
Systems. Journal of Object-Oriented Programming, 11, 8, pp. 53-58, 1999.

[5] Unified Modeling Language Specification – version 1.3, 1999,
http://www.rational.com/media/uml/resources/documentation/ad99-06-08-ps.zip.

Event Generator, which is environmental,
triggers Triggered Process.

Activating Condition can be true or false.

Triggered Process requires that Activating
Condition be true as a condition.

int eventGeneratorWrapper() {
int res = NOT_CONSUMED;
if (activatingCondition.getStatus()==true) {

triggeredProcess.activate();
res = CONSUMED;

}
return res;

}

http://www.rational.com/media/uml/resources/documentation/ad99-06-08-ps.zip

	Event Type
	
	References

