
ENGINEERING MOBILE AGENTS

Keywords: Agent-based system, Agent-Oriented Software Engineering, Mobility

Abstract: As the mobile agent paradigm becomes of interest to many researchers and industries, it is essential to

introduce an engineering approach for designing such systems. Recent studies on agent-oriented modeling

languages have recognized the need for modeling mobility aspects such as why a mobile agent moves,

where the agent moves to, when it moves and how it reaches its target. These studies extend existing

languages to support the modeling of agent mobility. However, these fall short in addressing some modeling

needs. They lack in their expressiveness: some of them ignore the notion of location (i.e., the "where")

while others do not handle all types of mobility (the "how"). Additionally, they lack in their accessibility, as

the handling of the mobility aspects is separated into multiple views and occasionally the mobility aspect is

tightly coupled with the functional behavior specification. View multiplicity reduces the comprehensibility

and the ease of specification, whereas the coupling with the functional behavior specification reduces the

flexibility of deploying a multi-agent systems in different configurations (i.e., without mobility). In this

paper, we address these problems by enhancing an expressive and accessible modeling language with

capabilities for specifying mobile agents. We provide the details of the extension, then illustrate the use of

the extended modeling language, and demonstrate the way in which it overcomes existing problems.

1 INTRODUCTION

Agent mobility has been intensively studied in resent

years. Although mobility is not a primary property

of an agent, it may enhance agent autonomy (which

is definitely a primary attribute of agents

(Wooldridge et al., 2000)). Gray et al. (2001)

identified several advantages of using mobile agents:

conservation of bandwidth, reduction in total

processing time, reduced latency, connected

operation, mobile computing, load balancing, and

dynamic deployment of software. Due to these

advantages, mobile agents are sometimes the most

suitable paradigm for agent-based systems

engineering (Cabri et al, 2001). This paradigm has

been demonstrated beneficial in several application

areas, e.g., distributed information retrieval,

workflow management, and network management

(Bellavista et al., 1999; Brewington et al., 1999;

Gray et al., 2001).

Because of the increased industrial and research

interest in mobile agents (AgentBuilder, 2006;

AgentLink, 2006), it is necessary that agent-oriented

methodologies support such mobility. In particular,

it is necessary to integrate agent mobility into the

modeling languages of these methodologies, to

provide a comprehensive engineering approach for

building agent-based systems. This will help

designers of agent-based systems to engineer mobile

agents.

OMG (2000) and FIPA (2001; 2003) carried out

many activities in order to standardize agent

mobility aspects. Those activities lead to an

agreement on the required infrastructure for agent

mobility in terms of general mobility concepts (such

as places and regions) within a multi-agent system

(MAS) and the required functionality of mobile

agents (such as agent migration, agent cloning, and

agent invocation). To support the standards (to be),

it is necessary that agent-oriented modeling

languages facilitate the specification of these agent

mobility concepts. In this paper, we enhance an

existing agent-oriented modeling language with the

capabilities of specifying the mobility aspects within

an agent-based system. Note that our study is not

first in addressing this need. Some of the agent-

oriented modeling languages recognized the need for

modeling mobility aspects such as why a mobile

agent moves, where the agent moves to, when it

moves and how it reaches its target (Mouratidis et

al., 2002). Yet, as discussed below, previous studies

fall short in addressing some of the modeling needs

for agent mobility.

In this paper, we address the problem of

integrating the mobility aspects of agent-based

systems into a modeling language by introducing

two key elements that should be supported by a

modeling language with respect to mobility: the

definition of places and environments and the

definition of agent mobility (i.e., migration, cloning

and invocation) (FIPA, 2003). To overcome the

problems aforementioned within the existing agent-

oriented languages, we leverage on an exiting

method – Object-Process Methodology (OPM) and

its MAS extension and suggest a modeling language

for specifying mobility aspects of agent-based

system. The choice of OPM for modeling agent-

based system is discussed in Sturm et al. (2003), in

which the authors present the motivation for

adopting OPM. They mainly discuss the advantages

of OPM with respect to accessibility and

expressiveness. We found it useful as well since it

provides a single unified model for capturing the

various system aspects and enables to view the

system as a whole, as required for modeling mobile

agents.

The contribution of this paper is twofold. First,

we survey existing studies for modeling mobile

agent systems and analyze their capabilities. Second,

we proposed a modeling language addressing the

limitation of existing solutions.

The rest of this paper is organized as follows.

Section 2 discusses related work. The Object-

Process Methodology for Multi Agent Systems

(OPM/MAS) is shortly described in Section 3.

Section 4 introduces the enhancements we propose

to support the modeling of the mobility aspects of

MAS, and Section 5 concludes with a discussion on

the advantages of the OPM/MAS approach for

specifying mobile agents and with future research

directions.

2 RELATED WORK

In the last decade many studies address the notion of

modeling mobile MAS. In this section we survey

these studies and analyze the capabilities of the

proposed approaches.

Multi-agent Software Engineering (MaSE) is a

general-purpose methodology for developing

heterogeneous MASs (DeLoach et al., 2001). It

supports the analysis and design phases and provides

comprehensive guidelines to move within the

development stages. MaSE was extended to enable

the specification of mobile agents (Self and

DeLoach, 2003). The extension consists of an

additional activity – move. The move activity gets

the required location and returns two values: the

movement results and, in case of a failure, the reason

for it. The move activity can be used within the

MaSE concurrent task diagrams during the analysis

phase to indicate the mobility of an agent. When

proceeding to the design phase, there is an automatic

transition supported by agentTool (DeLoach and

Wood, 2001) of the task diagram into components.

The transition includes adding specific messages to

the Agent component (which coordinates the agent

activities), to the mobile components (which consist

of the move activity), and to the non-mobile

components. In addition, the automatic transition

adds to the component diagram the states required to

deal with mobility.

The MaSE approach to mobility is lacking with

respect to several aspects. When referring to

expressiveness, the MaSE location notion refers to a

machine, but ignores other abstractions of location

such as context and regions. It does not deal with the

path the agent is required to move and, at this stage,

agent cloning and agent invocation are not handled.

When referring to accessibility, the move method is

integrated into the model as a regular activity, thus

when trying to understand a model, there is no

emphasis on the mobility aspect (i.e., it is blended

into the model). This may lead to misinterpretation

of the model with respect to mobility. In addition,

the agent mobility is handled in two different

components: the agent component and the mobile

component. The specification of the move activity in

two various components requires the designer’s

intervention, thus may overload her/him. In addition,

the mobility specification is tightly coupled into the

functional behavior specification.

GAIA is a methodology for agent-oriented

analysis and design (Wooldridge et al., 2000). GAIA

is a general-purpose methodology and deals with the

social and the agent aspects of systems. GAIA has

been enhanced to model the mobility aspect by

Sutandiyo et al. (2003). It is called m-GAIA. That

extension consists of an indication whether an agent

type is mobile or stationary (within the GAIA agent

model) and a new mobility model. The mobility

model consists of place types, which are locations

that a mobile agent can visit or reside in, the

relationships between the agent types and the place

types (including cardinality), and a travel schema of

each mobile agent. The travel schema consists of the

following: (1) a mobility description; (2) the origin

of the agent type; (3) the destination of the agent

type; (4) a list of atomic movements (which are

descriptions of the tasks achieved by a specific

movement); and (5) a list of paths (a path is an

ordered set of movements).

There are two main drawbacks with the m-GAIA

approach. The first one is related to the

expressiveness of the mobility. The reason for the

agent decision to perform the movement is unclear,

thus the why question of mobility is not addressed

by the new approach. In addition, the agent

invocation and agent cloning are not dealt with. The

second drawback of the m-GAIA approach is related

to accessibility. The designers of m-GAIA add a

new model, which will probably increase the

complexity of specifying MASs with GAIA. The

model multiplicity problem was discussed in Kabeli

and Shoval (2001) and Peleg and Dori (2000). That

problem is characterized by a lack of integration

between the models and the need to maintain

consistency across them and the need to gather

information from various models for understanding

the system specifications.

UML (OMG, 2007), which is the standard de-

facto for modeling systems, has been extended to

model agent-based systems in several ways. In this

paper, we refer only to the mobile aspect within the

proposed extensions. Park et al. (2000) suggest a

new agent mobility model. In that model they use a

sequence diagram, but with different semantics, that

specifies the mobility options including the abstract

specification of the reason for the mobility. The

problems with that approach are that it is too

abstract; there is no clear connection between the

behavior and the mobility, no reference to an

abstract location (such as regions), and the agent

cloning and agent invocation are not dealt with.

Another extension that has been proposed for UML

by Klein et al. (2001) is based on the extension

mechanism of UML. In that extension the authors

proposed a set of stereotypes to address the mobility

gap. These stereotypes include: mobile agent,

region, agent system, agency, move, remote

execution, clone and role change. These stereotypes

might be associated with tagged-values (as

supported by the extension mechanism of UML).

The drawbacks of that extension are the following:

the physical architecture and the mobility aspects are

not correlated, and there is a distribution of the

answers to how, when, where, and why questions

related to mobility in several diagram types, thus it

complicates the modeling activity and the

understanding of the outcome (i.e., the mobility

aspect within the model). Other UML extensions

were suggested to support modeling mobility aspects

(Mouratidis et al., 2002; Poggi et al., 2003). These

extensions include enhancements of the deployment

diagram with a few stereotypes (home, visitors,

destination, moves) and tagged values, and the

activity diagram with the possibility to define the

mobility path of an agent by referring to the nodes

from the deployment diagram. The problems with

that approach are the following: the parameters are

informal, there is no connection to the agent

functionality (i.e., sequence diagram, class diagram

etc.), there is no mentioning of the cloning and the

agent invocation mobility types, and there is no

reference to the location notion.

UML activity diagram was also extended by

utilizing the multidimensional partitioning

mechanism of that diagram, in which one dimension

represents a location and the other dimension

represents an agent (Kang and Taguchi, 2004). In

addition, special activities are introduced such as Go

and Clone which aim at serving as mobility

specification. That extension suffers from the

following limitations: when referring to

accessibility, the special activities are integrated into

the model as a regular activity, thus when trying to

understand a model, there is no emphasis on the

mobility aspect (i.e., it is blended into the model).

This may lead to misinterpretation of the model with

respect to mobility. In addition, the mobility

specification is tightly coupled into the functional

behavior specification.

Another extension for the activity diagram

includes the definition of a UML profile for mobility

purposes (Baumeister et al, 2003). Similar approach

was also presented in Grassi et al. (2004). These

approaches although might be utilize to model

mobile agents refers to the general notion of system

mobility.

Extension for UML sequence diagram is also

suggested by Kosiuczenko (2003, 2005) in which

new notations and semantics are being introduced.

The main limitations of this extension are: the

change of UML sequence diagram, the high

coupling of mobility into the system functionality,

and the accessibility is limited in terms of

understanding the specification.

Other more comprehensive extensions are also

available (Saleh and El-Morr, 2004; Belloni and

Marcos, 2004). These extensions mainly suffer from

high coupling of the mobility aspect into the system

functionality.

In addition to the above, all of the UML

extensions suffer from the model multiplicity

problem as discussed before.

3 OPM/MAS IN A NUTSHELL

OPM/MAS is based on the Object-Process

Methodology (Dori, 2002; OPM, 2007), which is an

integrated approach to the study and development of

systems in general and information systems in

particular. The basic premise of the holistic OPM

paradigm is that objects and processes are two types

of equally important classes of things, which

together describe the function, structure, and

behavior of systems in a single, domain-independent

model.

OPM is a general-purpose methodology, thus

using its core symbol set may be too low-level for

modeling a domain-specific application. This is so

because the pertinent domain uses specialized

concepts and building blocks that are at a higher

level of abstraction than the basic OPM entities

(objects, processes, and states).

Figure 1. System Diagram of the OPM/MAS meta-model

Figure 2. OPM/MAS meta-model - Agent in-zoomed

m

m

m

m

m
m

m

m

m m

m m

m

m

m

m

m

m

m

m

m

m

m m

m

m

m

m

m

m

OPM extension for MAS, as discussed by Sturm

et al. (2003), follows principles of the Meta Object

Facility (MOF) concept (OMG, 2002), which

enables its flexibility. In that work the authors

suggest a three layers architecture as follows: (1) a

meta-model, which is the OPM itself; (2) an

intermediate meta-model, which describes the

specific building blocks within the MAS domain

using OPM; and (3) a model, which is based on both

the meta-model and the intermediate meta-model.

That intermediate meta-model, which is the core

element of OPM/MAS, was designed based on

previous research. The designers of OPM/MAS

divide the set of MAS building blocks into two

groups. The first group consists of static, declarative

building blocks, while the second group consists of

building blocks with behavioral, dynamic nature.

In figures 1 and 2 the intermediate meta-model

for multi-agent systems using OPM is presented. It

also includes mobility-based concepts which were

not discussed in Sturm et al. (2003). This

intermediate meta-model provides guidelines, as

well as, constraints of how to model multi-agent

systems, including mobile agent systems.

4 DESIGNING MOBILE AGENTS

USING OPM/MAS

In this section we present the OPM/MAS

enhancements to support agent mobility

specification. The first sub-section introduces the

new building blocks, whereas the second sub-section

demonstrates the use of the intermediate metamodel

for specifying agent mobility within the context of

MAS.

4.1 Mobility in OPM/MAS

In this section we introduce the proposed changes to

OPM/MAS in order to make it suitable for

specifying agent mobility. As stated in Sturm et al.

(2003), the OPM/MAS metamodel can be changed

according to application needs. Following that

principle, we propose an enhancement to the

suggested set of building blocks.

The new the building blocks are the following:

 Mobilizing: A set of methods by which an

agent performs a mobility activity such as

migration, cloning, and agent invocation.

 Type: The mobility type - migration,

cloning, or invocation.

 Location: The location to which the agent

should migrate.

 Priority: The importance level of the

mobility. This parameter is defined in order

to define priorities in case of several

possibilities for mobility within an agent.

 Result: The indication of the mobilizing

process result.

The enhancement of the set of building blocks

proposed in this paper refers to the system structure

and to the system flow. The system structure is

separated into the logical architecture, which is

represented by the environment building block and

the physical architecture, which is represented by the

platform building block. Further, the relationships

between the architectures are also specified. Since

we are dealing with structural aspects of the system,

the above building blocks were chosen to be OPM

objects. The system flow enhancement consists of

adding the mobilizing process and its parameters.

Since we view mobility as part of the agent

functionality (as in other studies, e.g., Self and

DeLoach (2003) and Baumeister et al. (2003)), we

define it as an OPM process in order to integrate the

agent mobility into the regular flow of the agent

process and yet differentiate it from regular tasks by

its role (i.e., mobilizing). However, in contrast to

existing languages the mobility specification can be

easily removed by filtering out all mobility building

blocks mentioned above, allowing the specification

of a system without introducing mobility constraints.

4.2 The Technical Report Searcher Case
Study

In the following, we present an example of using

OPM/MAS for modeling mobile agents related to

distributed information retrieval via the technical

report (TR) searcher case study (Gray et al., 2001).

In this case study technical reports are distributed

across several machines, each executing a stationary

information retrieval agent. When these agents are

executed, they register with a virtual yellow pages

agent. In search for technical reports, a client agent

queries the yellow pages agent for the location of the

stationary information retrieval agents. It then sends

its "child" agents to these locations. These child

agents interact with the stationary agents, which in

turn reply to the child agents with the search results.

In addition, the client agent checks for the network

quality and determines whether it requires migrating

to a proxy site in order to communicate with the

machines hosting the stationary agents.

Figure 3. Technical Report Searching System – System

Diagram

Figure 4. Technical Report Searching System – TR Searching

Agent in-zoomed

Figure 5. Technical Report Searching System – Searching

Task in-zoomed

Figure 3 presents the system diagram of the

Technical Report Searcher system. It consists of four

platform types: Client Platform, which hosts the TR

Searching Agent; Administrator Platform, which

hosts the Yellow Pages Agent; the Information

Resource Platform, which hosts the Stationary IR

(Information Retrieval) Agents; and the Proxy

Platform, which is capable of hosting the TR

Searching Agent in case of faulty communication

between the Client Platform and the Information

Resource Platform. The OPD in Figure 3 also

describes the communication paths (which are the

logical routes among the agents) and messages.

In Figure 4, the TR Searching Agent is in-

zoomed. The agent is activated by the Client User,

as shown by the agent link from the object Client

User (a human) to the process TR Searching Agent.

The TR Searching Agent performs its tasks

sequentially, as determined by the vertical order

within the OPD. The Querying Task accepts the

user's input and yields a Query object. The

Administrating Task follows the Querying Task

and yields an object indicating whether mobility is

qeriuqer and an object representing the required

Agent Location. If mobility is required, the Proxy

Mobilizing process occurs and causes the TR

Searching Agent to migrate to the Proxy Platform.

If the Proxy Mobilizing process fails, then it is

triggered again. This is indicated by the “e”, for

"event", attached to the arrowhead of the link

connecting the failure state within the Mobility

Result object and the Proxy Mobilizing process.

When the mobility result is a success (or if it was not

required in the first place), the Searching Task is

performed, followed by the Results Receiving Task.

In Figure 5, the Searching Task from the OPD

of Figure 4 is specified by zoom into its

specification. It begins with the Agent Location

Mapping Task, which determines Mobility

Location, in which the Child Agent has to be

invoked. This task is followed by launching the

Child Agent in the appropriate platform. In case the

invocation fails, the agent tries to re-launch the

Child Agent until it succeeds. When the Child

Agent is running, the TR Searching Agent sends a

Request Query Message and waits for a reply.

Upon receiving the query results, Reply Query

Message, the results received from its child agents

are merged to obtain the Results Set, which the

Client User ultimately receives, as Figure 4 shows.

5 CONCLUSION

In this paper we leverage on the object-process

methodology to facilitate the modeling of agent

mobility. We show how the OPM/MAS intermediate

meta-model can be enhanced in order to support

agent mobility. Following that enhancement, we

demonstrate the use of that intermediate meta-model

to specify a MAS application. In particular, we

exemplify the way according to which the

OPM/MAS addresses the four questions of mobility:

1. Why a mobile agent performs a mobility action?

In OPM/MAS the reason of the agent mobility is

encapsulated within the task flow. This means

that the agent mobility is determined according

to the task flow and decisions that are made

during its process. The mobility is represented as

an OPM process (Mobilizing) thus easily

integrated within the task flow. In the TR case

study, the Client agent moves in order to

improve its communication, where as a Child

agent is invoked in order to search information in

another location.

2. When the agent performs a mobility action?

The timing in which the agent moves is specified

in OPM/MAS via the process sequence. It may

move due to other task termination, it may move

due to new information, or it may move due to a

user request. In the TR case study, the Client

agent moves upon determining Administrating

problems.

3. Where the agent moves to?

The destination of the agent in OPM/MAS is

determined by the mobilizing process parameter

– Location. The locations within a system

according to OPM/MAS could be platforms

(could be referred to as places) or environments

(could be referred to as regions). These are

usually specified within the top level OPDs.

4. How the agent reaches its target?

The path according to which the agent reaches its

target is specified by the order of the mobilizing

processes. In TR case study, the path is a straight

forward way, from the Client platform to the

Proxy platform.

The weaknesses of the existing agent-oriented

methods with regards to mobility are addressed

within the proposed solution. We refer to the

location notion with its various level of abstraction

by providing the environment building block and its

relationships with the platform building block. This

issue is neglected by MaSE. The proposed solution

refers to all mobility types by defining the mobility

type object, unlike MaSE, m-GAIA and UML

extensions. We integrate all of the mobility aspects

within a single-unified framework, whereas in the

other methods the integration of some of the

mobility aspects is not clear, difficult to understand,

or non-exist.

We also believe that a designer of a mobile

multi-agent system should not handle the

infrastructure specification. She can leverage her

specification using existing frameworks and

infrastructures by mapping between the OPM/MAS

intermediate metamodel building blocks to those of

the frameworks and infrastructures. In our study we

start mapping the intermediate metamodel of

OPM/MAS to JADE (TILAB, 2007). For example,

the platform is mapped to a platform within JADE,

an environment is mapped into a JADE container, an

agent is mapped to a JADE agent, a task is mapped

into the behaviour classes of JADE depending on its

type (e.g., simple, parallel, or composite), messaging

with its parameters can be mapped into JADE

messaging mechanism, finally mobility utilizes the

regular invocation command in JADE (for agent

invocation) and the JADE API for mobility using the

moving and cloning methods. This mapping should

be further formalized and tested.

Further research is required to examine the

accessibility and adherence of the OPM/MAS

approach to build agent-based systems and in

particular, mobile agents.

REFERENCES

AgentBuilder, 2006.

http://www.agentbuilder.com/AgentTools/.

AgentLink, 2006.

http://www.agentlink.org/resources/agent-

software.php.

Baumeister, H., Koch, N., Kosiuczenko, P., and Wirsing,

M., 2003. Extending Activity Diagrams to Model

International Conference of Mobile Systems, Objects,

Components, Architectures, Services, and Applications

for a NetworkedWorld, LNCS 2591, 278-293.

Belloni, E. and Marcos, C., 2004. MAM-UML: An UML

Profile for the Modeling of Mobile-Agent

Applications. The 24th International Conference of the

Chilean Computer Science Society, 3-13.

Bellavista, P., Corradi, A., and Stefanelli, C., 1999. An

Open Secure Mobile Agent Framework for Systems

Management. Journal of Network and Systems

Management (JNSM), Special Issue on Mobile Agent-

based Network and Service Management 7(3), 323-

339.

Brewington, B., Gray, R., Moizumi, K., Kotz, D.,

Cybenko, G., and Rus, D., 1999. Mobile Agents for

Distributed Information Retrieval. In Intelligent

Information Agents, chapter 15.

Cabri, G., Leonardi, L., Mamei, M., and Zambonelli, F.,

2001. Mobile Agent Organizations. In WOA 2001.

DeLoach, S. A., Wood, M. F., and Sparkman, C. H., 2001.

Multiagent Systems Engineering.The International

Journal of Software Engineering and Knowledge

Engineering, 11 (3), 231-258.

DeLoach, S. A. and Wood, M., 2001. Developing

Multiagent Systems with agentTool. In Proceedings of

ATAL 2000, LNCS 1986.

Dori, D., 2002. Object-Process Methodology - A Holistic

Systems Paradigm, Springer, Heidelberg.

FIPA, 2001. FIPA Agent Management Support for

Mobility Specification.

http://www.fipa.org/specs/fipa00087/PC00087B.pdf.

FIPA, 2003. FIPA Modeling Area: Deployment and

Mobility.

http://www.auml.org/auml/documents/DeploymentMo

bility.zip.

 Grassi, V., Mirandola, R. and Sabetta, A., 2004. A UML

Profile to Model Mobile Systems. The Unified

Modeling Language-2004, LNCS 3273, 128-142.

Gray, R.S., Cybenko, G., Kotz, D., and Rus, D., 2001.

Mobile Agents: Motivations and State of the Art.

Handbook of Agent Technology.

Kabeli, J., and Shoval, P., 2001. FOOM: functional- and

object-oriented analysis & design of information

systems - an integrated methodology. Journal of

Database Management, 12 (1), 15-25.

Kang, M. and Taguchi, K., (2004) Modelling Mobile

Agent Applications by Extended UML Activity

Diagram. ICEIS 2004, 519-522.

Klein, C., Rausch, A., Shiling, M., and Wen, Z., 2001.

Extension of the Unified Modeling Language for

Mobile Agents. In The Unified Modeling Language:

Systems Analysis, Design and Development Issues, 1-

25, Idea Group Publishing.

Kosiuczenko, P., 2005. Partial Order Semantics of

Sequence Diagrams for Mobility. In Scenarios:

Models, Transformations and Tools, LNCS 3466, 212-

227.

Kosiuczenko, P., 2003. Sequence Diagrams for Mobility.

In Advanced Conceptual Modeling Techniques: ER

2002 Workshops, ECDM, MobIMod, IWCMQ, and

eCOMO, LNCS 2784.

Mouratidis, H., Odell, J., and Manson, G., 2002.

Extending the Unified Modeling Language to Model

Mobile Agents. In Proceedings of the Agent Oriented

Methodologies Workshop (at the OOPSLA 2002).

OMG, 2000. Mobile Agent Facility Specification.

http://www.omg.org/docs/formal/00-01-02.pdf.

OMG, 2002. Meta Object Facility (MOF) v1.4.

http://www.omg.org/technology/documents/formal/mo

f.htm.

OMG, 2007. Unified Modeling Language (UML) 2.0,

http://www.omg.org/technology/documents/formal/um

l.htm,.

OPM, 2007. http://www.objectprocess.org.

Park, S., Kim, J., and Lee, S., 2000. Agent-Oriented

Software Modeling with UML Approach. IEICE

Transaction on Information & Systems, E83-D (8),

1631-1641.

Peleg, M. and Dori, D., 2000. The Model Multiplicity

Problem: Experimenting with Real-Time Specification

Methods. IEEE Transaction on Software Engineering,

26(8), 742-759.

Poggi, A., Rimassa, G. , Turci, P., Odell, J., Mouratidis,

H., and Manson, G., 2003. Modeling Deployment and

Mobility Issues in Multiagent Systems Using AUML

In Proceeding of Agent-Oriented Software

Engineering (AOSE), 69-84.

Saleh, K. and El-Morr, C., 2004. M-UML: an extension to

UML for the modeling of mobile agent-based software

systems. Information and Software Technology, 46,

219–227.

Self, A. and DeLoach, S. A., 2003. Designing and

Specifying Mobility within the Multiagent Systems

Engineering Methodology. Special Track on Agents,

Interactions, In Mobility, and Systems (AIMS) at The

18th ACM Symposium on Applied Computing.

Sturm, A., Dori, D., and Shehory, O., 2003. Single-Model

Method for Specifying Multi-Agent Systems. In

Proceedings of the second international joint

conference on Autonomous agents and multiagent

systems, 121-128.

Sutandiyo, W., Chhetri, M. B., Krishnaswamy, S., and

Loke, S. W., 2003. From m-GAIA to Grasshopper:

Engineering Mobile Agent Applications. In

Proceedings of iiWAS2003.

TILAB, 2007. Java Agent Development Framework,

http://jade.cselt.it/.

Wooldridge, M., Jennings, N. R., and Kinny, D., 2000.

The Gaia Methodology for Agent-Oriented Analysis

and Design. Journal of Autonomous Agents and Multi-

Agent Systems 3 (3), 285-312.

http://www.cis.ksu.edu/~sdeloach/publications/Conference/agentTool%20ATAL%202000.pdf
http://www.cis.ksu.edu/~sdeloach/publications/Conference/agentTool%20ATAL%202000.pdf
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm

