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Abstract. As systems are becoming larger and more complex, the challenge of developing 
quality systems efficiently is on the rise. While traditionally document-centric approaches have 
been used, in recent years the benefits of model-based systems engineering have been 
acknowledged. Recognizing the importance of modeling as a key factor in managing system 
development complexity, the selection of the modeling language to be used should be 
considered. This work evaluates aspects of two systems modeling languages: SysML – OMG's 
Systems Modeling Language and OPM – Object-Process Methodology. The evaluation was done 
on the basis of a concrete sample problem, in which multiple aspects of the system were modeled 
in both SysML and OPM. Some of the findings, which were generalized from the case study, 
suggest that OPM is usually advantageous in presenting the system different hierarchy levels and 
combining structure with behavior, while SysML is more convenient for modeling detailed 
views of some aspects.

Introduction
One of the main goals of conceptual modeling is to improve system analysis and enable its 

architecting and detailed design. Early model construction provides for verification and 
validation of a system prior to implementation and integration of its components. Other benefits 
of a conceptual model include improving the communication between the different stakeholders 
and enabling the reuse of some of its components. A complete model should support various 
aspects of a system, notably the three fundamental ones—the functional, behavioral, and 
structural aspects. Function pertains to the goal the system is designed for, while the combination 
of structure and behavior, commonly called the system's architecture, embodies the concept upon 
which the solution of the function execution problem is based.

Several modeling languages have been designed for general-purpose systems, each with its 
own semantics and notation. Typically, a Systems Modeling Language (SML) provides tools for 
representing a system in visual and/or textual modalities. Choosing the appropriate SML may 
have large impact on the success of the model construction, hence it is important and interesting 
to evaluate the effectiveness of different SMLs.

This work focuses on two of the state-of-the-art representative SMLs: OMG Systems 
Modeling Language (SysML) (OMG 2007c, OMG 2007d) and OPM – Object-Process 
Methodology (Dori 2002). SysML is based on UML 2 (OMG 2007a, OMG 2007b), which is 
widely used as a de-facto standard in software engineering, with several extensions and 



modifications for general systems engineering. In contrast, OPM was initially designed to 
support modeling of general-purpose systems, thus it has no inherent “software oriented” 
language semantics. Furthermore, OPM treats software systems as specializations of general 
systems. For example, OPM objects and processes can be physical, which is typical of systems in 
general, or informatical, which exist in models of both software systems and general systems. 
Another major difference is the number of views (diagram types) used in each language. While 
OPM is based on a single diagram type—Object-Process Diagram (OPD), SysML has inherited 
UML's model multiplicity (Peleg and Dori 2000), i.e., it presents each one of the system's aspects 
in a different view using a different diagram type. SysML includes several types of UML 
diagrams, as well as two new types of diagrams for systems engineering, Requirement Diagram 
and Parametric Diagram. OPD, OPM's single type of diagram, is missing some elements that are 
important for systems engineering, such as the SysML parametric constraints. Both languages 
support hierarchical representation of the model. However, in contrast to SysML, where the 
model is represented in separate views with partial support of hierarchy, in OPM, the entire 
system model is based on a well-defined hierarchy of OPDs. These are but few of several 
dissimilarities between the languages, which make it interesting to learn and compare them. 

Extending the work of Grobshtein et al. (2007), we have selected a Hybrid gas/electric 
powered Sport Utility Vehicle (SUV), taken from the SysML specification (OMG 2007c) as a 
sample system to support this investigation. Various aspects of this system have been modeled in 
both SysML and OPM. Several aspects of the reference Hybrid SUV SysML model were 
matched with a semantically equivalent OPM model in order to compare and characterize the 
two languages. Analysis and generalization of the observations from the particular example are 
then provided. Conclusions and future work are finally suggested.

Overview of OPM and SysML
As a prelude to our comparative investigation, we briefly describe the two languages considered 
in this work. The description of OPM is more extensive, as it is less familiar than UML and 
SysML.

Object-Process Methodology
Object-Process Methodology (OPM) is a holistic approach to conceptual modeling of 

complex systems. The OPM model integrates structural, functional and behavioral aspects of a 
system in a single, unified view, expressed bi-modally in equivalent graphics and text with built-
in refinement-abstraction mechanism.

The graphic modality is expressed via a set of Object-Process Diagrams (OPDs) and the 
textual—via Object-Process Language (OPL). OPDs include both the entities of the model 
(objects, processes, and states) and links and relations among them, as well as data to preserve 
the graphical representation of the model elements (size, location, etc.). OPL equivalently 
specifies the same OPM model in a subset of English, enabling one-to-one mapping between the 
graphic and the textual representations, such that two semantically equivalent modalities, one 
graphic and the other textual, jointly express the same OPM model.  A set of inter-related, 
hierarchically organized OPDs show portions of the system at various levels of detail. The OPM 
ontology comprises entities and links. Each OPM element (entity or link) is denoted in an OPD 
by a symbol, and the OPD syntax specifies correct and consistent ways by which entities can be 
connected via structural and procedural links, such that each legal entity-link-entity combination 
bears specific, unambiguous semantics. See Figure 1 for example.



Figure 1. An Object-Process 
Diagram (OPD) showing the three 

OPM entities:  Object, Process, 
and State, and the input/output 

procedural link pair, which 
expresses that Processing 

changes Object from State 1 to 
State 2.

There are three different types of entities: objects, 
processes (collectively referred to as "things"), and 
states. These entities are shown in Figure 1. Objects are 
the (physical or informatical) things in the system that 
exist, and if they are stateful (i.e., have states), then at 
any point in time they are at some state or in transition 
between states. Processes are the things in the system that 
transform objects: they generate and consume objects, or 
affect stateful objects by changing their state.

Links can be structural or procedural. Structural links 
express static, time-independent relations between pairs 
of entities. The four fundamental structural relations are 
aggregation-participation, generalization-specialization, 
exhibition-characterization, and classification-
instantiation. General tagged structural links provide for 
creating additional "user-defined" links with specified 
semantics, similar to association links in SysML block 
diagrams. Procedural links connect processes with 
objects or object states to describe the behavior of a 
system. System behavior is manifested in three ways: (1) 

A processes can transform (generate, consume, or change the state of) one or more objects; (2) 
an object can enable one or more processes without being transformed by them, in which case it 
acts as an agent (if it is human) or an instrument; and (3) an object can trigger an event that 
invokes a process if some conditions are met. Accordingly, a procedural link can be a 
transformation link, an enabling link, or an event link. A transformation link expresses object 
transformation, i.e., object consumption, generation, or state change. Figure 1 shows a pair of 
transformation links, the input and output links. It expresses in OPL that "Processing changes 
Object from State 1 to State 2." An enabling (agent or instrument) link expresses the need for a 
(possibly state-specified) object to be present in order for the enabled process to occur. The 
enabled process does not transform the enabling object. An event link connects a triggering 
entity (object, process, or state) with a process that it invokes.

The System Diagram, SD, is the topmost diagram in a model. It presents the most abstract 
view of the system, typically showing a single process as the main function of the system, along 
with the most significant objects that enable it and the ones that are transformed by it. The 
further from the root the OPD is, the more detailed it is. Each OPD, except for the SD, is 
obtained by refinement – in-zooming or unfolding – of a thing (object or process) in its ancestor 
OPD. This refined thing is described with additional details. The abstraction-refinement 
mechanism ensures that the context of a thing at any detail level is never lost and the "big 
picture" is maintained at all times.

A new thing (object or process) can be presented in any OPD as a refineable (part, 
specialization, feature, or instance) of a thing at a higher abstraction level (a more abstract OPD). 
It is sufficient that some detail appears once in some OPD in order for it to be true for the system 
in general. Accordingly, copies of a thing can appear in other diagrams, where some or all the 
details (such as object states or thing relations) that are unimportant in the context of a particular 
diagram need not be shown.

The Object-Process Language (OPL) is the textual counterpart modality of the graphical 



OPD set. OPL is a dual-purpose language, oriented towards humans as well as machines. 
Catering to human needs, OPL is designed as a subset of English, which serves domain experts 
and system architects, jointly engaged in modeling a complex system. Every OPD construct is 
expressed by a semantically equivalent OPL sentence or phrase that is generated automatically 
by an OPM-supporting modeling tool, such as OPCAT (Dori et al. 2003), in response to the 
user's input. According to the modality principle of the cognitive theory of multimodal learning 
(Mayer 2001), this dual graphic/text representation of the OPM model increases the human 
processing capability. It has indeed been our experience that humans enhance their 
understanding of the model as they conveniently draw upon the graphic and/or the textual model 
representation to complement what they missed in the other modality. 

A major problem with most graphic modeling approaches is their scalability: As the system 
complexity increases, the graphic model becomes cluttered with symbols and links that connect 
them. The limited channel capacity (Mayer 2001) is a cognitive principle which states that there 
is an upper limit on the amount of detail a human can process before being overwhelmed. This 
principle is addressed by OPM and implemented in OPCAT with three abstraction/refinement 
mechanisms. These enable complexity management by providing for the creation of a set of
interrelated OPDs (along with their corresponding OPL paragraphs), each of which is limited in 
size, thereby avoiding information overload and enabling comfortable human cognitive 
processing. The three refinement/abstraction mechanisms are: (1) unfolding/folding, which is 
used for refining/abstracting the structural hierarchy of a thing and is applied by default to 
objects; (2) in-zooming/out-zooming, which exposes/hides the inner details of a thing within its 
frame and is applied primarily to processes; and (3) state expressing/suppressing, which 
exposes/hides the states of an object. 

OPCAT (Dori et al. 2003) is a software product that supports OPM-based system 
development and lifecycle management by implementing the hierarchical, bimodal expression of 
the OPM model. The OPCAT platform supports system requirements management, including 
interconnections and traceability to the model entities. Additional features include animated 
simulation of the model, code generation, and automatic document generation. The OPM model 
of the Hybrid SUV system, shown in the next section of this paper, was developed in OPCAT.

Systems Modeling Language
The drive to adapt UML to systems engineering applications brought about the establishment 

of the OMG Systems Engineering Domain Special Interest Group (SE DSIG). This OMG group, 
supported by the International Council on Systems Engineering (INCOSE) and ISO AP 233 
workgroup, worked together on the requirements of the modeling language. The result was the 
UML for Systems Engineering RFP (OMG 2003) issued by the OMG in March 2003. SysML 
was the only response to the RFP. The SysML team consisted of industry users, tool vendors, 
government agencies, professional organizations and academia. Four and a half years after the 
RFP was published, version 1.0 of the SysML specification was formally released by OMG as an 
OMG specification in September 2007 (OMG 2007c).

A new general-purpose modeling language for systems engineering, SysML is intended to 
support specification, analysis, design, verification, and validation of complex systems. The 
systems may be of broad range, and can include hardware, software, data, personnel, procedures, 
facilities, and more.

SysML reuses a subset of UML 2 and provides additional extensions in order to satisfy the 
RFP requirements. As a visual modeling language, SysML offers several types of diagrams 



which can reflect various aspects of a system. It is common to partition SysML diagrams into 
four "pillars" – structure, behavior, requirements, and parametric relationships. In addition, 
SysML provides means to cross-connect the different model elements. The tutorial of 
Friedenthal et al. (2007) contains examples of the various SysML diagram types.

Overall, SysML includes nine types of diagrams: four types of structure diagrams, four types 
of behavior diagrams, and a requirements diagram. In this section, we discuss mainly the SysML 
extensions and modifications with respect to UML, which make it more relevant to conceptual 
modeling of systems. SysML introduces two new diagram types: the Requirement Diagram and 
the Parametric Diagram. In addition, SysML modifies three types of diagrams from UML: Block 
Definition Diagram, Internal Block Diagram, and Activity Diagram. The remaining four SysML 
diagrams are reused from UML without new features.

Requirements: SysML supplies means to represent text-based requirements and to connect them 
to other model elements. A basic requirement is composed of a unique identifier and text 
properties. The requirements diagram can be shown in different formats – graphical, tabular, or 
tree structure. Requirements can also be part of other diagrams, reflecting relationship to other 
model constructs. Generally, the SysML requirements constructs are not meant to replace the 
external requirements management tools, but rather to better integrate the system requirements 
with other parts of the model. 

The SysML specification provides several relationships among requirements, such as 
requirements hierarchies, source-derived requirement dependencies, satisfaction relations 
between requirements and the model, and verification dependencies to test-cases.

Structure: The basic structural element in SysML is Block. It can be used to describe physical 
or logical elements of the system, such as hardware, software, data, or persons. Blocks can 
describe any level of the system hierarchy, from single components up to the top-level system.

There are two types of structural diagrams for blocks depiction: Block Definition Diagram 
and Internal Block Diagram. The Block Definition Diagram describes the relationships among 
blocks, such as associations, dependencies, and generalizations. It specifies system hierarchy and 
classifications. The Internal Block Diagram represents the internal structure of a block using 
block properties and connectors between properties. This diagram specifies interconnection of 
parts. Another SysML structural diagram, the UML Package Diagram, is used to organize the 
model by grouping model elements.

Parametric: Parametric Diagram is a new diagram type that was introduced into SysML. By 
providing the ability to express constrains between properties, a Parametric Diagram enables 
integration of engineering analysis, such as performance and reliability models with SysML 
design models. The constraints (equations), including the underlying parameters, are captured in 
ConstraintBlock constructs. For example, a ConstraintBlock can have the parameters F, m, and 
a, and the constraint {F=m*a}. Constraint blocks are defined on a Block Definition Diagram, so 
they can be reused. Parametric Diagrams contain usage of constraint blocks to constrain the 
value properties of other blocks. This is done by binding the constraint parameters (such as m) to 
specific actual value properties of a block (such as the mass of a vehicle).

Behavior: SysML specifies four types of behavioral diagrams: Activity Diagram, Sequence 
Diagram, State Machine Diagram, and Use Case Diagram. The role of the Activity Diagram is to 
represent the flow of inputs and outputs and the flow of control between actions. It incorporates 
sequences and conditions for coordinating activities. Activities and activity diagrams exist also 
in UML, but SysML provides several extensions (Bock 2006), including means to support what 



is known as "continuous" flow modeling, such as rate restrictions. Support for probabilities and 
extensions to control in activity diagrams (known as "Control as Data") were added.

The Hybrid Sport Utility Vehicle Case Study
Our approach to evaluating, comparing, and analyzing the two modeling languages under 

study leans on the investigation of a concrete modeling problem. To this end, we have selected 
the SysML specification sample problem from (OMG 2007c). The system to be modeled is a 
Hybrid gas/electric powered Sport Utility Vehicle (SUV). For each of the function, structure and 
behavior aspects of the problem, we bring the SysML diagrams used to model it from (OMG 
2007c), followed by their semantically equivalent OPDs. We compare and analyze the different 
and similar points, and then try to generalize our observations.

This section is divided into three subsections. The first one deals with establishing the system 
context, system boundaries, and top-level use cases. The next subsection is dedicated to analysis 
and elaboration of top-level system behavior. The third subsection focuses on system structure, 
including hierarchy and relationships among components.

System Context, Boundaries and Use Cases
We start modeling the Hybrid SUV system by examining Figure 2, a context diagram which 

is a specific use of SysML Internal Block Diagram. It depicts some of the top-level entities in the 
overall enterprise and their relationships. In order to distinguish the system from its environment, 
the user-defined «system» and «external» stereotypes are used (applied to blocks). The "actor" 
symbol is also used to represent a model element which is part of the environment.

Figure 2. Context of the Hybrid SUV system in SysML

Figures 3 and 4 contain the OPDs that describe the same type of information in OPM. Figure 
3 is the System Diagram (SD)—the top-level diagram in the OPD hierarchy, which includes 
several objects, as well as one process, called Vehicle Using. This process is the main function of 
the system, to be decomposed in lower-level OPDs. Vehicle Using is connected to the objects that 
enable it – in our case the Hybrid SUV and the various users (Driver, Passenger and Maintainer). 
Environmental (non-systemic) things are denoted by a dashed border, while physical things (as 



opposed to informatical ones) are 
shaded. In order to keep the SD clear 
and focus only on top-level entities, it 
does not contain the components of 
the Driving Conditions object. A 
separate diagram, shown in Figure 4, 
was created for that purpose, using 
OPM's unfolding mechanism.

We continue to construct the 
model by specifying use cases. The 
SysML model in (OMG 2007c) 
includes two use case diagrams. The 

first one, showing top-level use cases, is not 
brought in this paper. The second diagram, 
shown in Figure 5, depicts goal level use cases 
associated with "Operate the Vehicle", which is 
one of the top-level use cases. While in SysML 
the use cases are modeled by a dedicated 
diagram type, in OPM the semantically 
equivalent information is expressed using the 
single OPD diagram kind. The diagram 
describing the top-level use cases, which is 
shown in Figure 6, was created in OPM by 

zooming into the Vehicle Using process from the top-level SD, exposing its subprocesses. These 
subprocesses are the top-level system use cases. The Hybrid SUV object is connected with an 
instrument link to the 
containing Vehicle Using
process, as it serves as an 
enabler to all the subprocesses
it contains. Similarly, further 
decomposition was done by 
zooming into the Vehicle 
Operating process, resulting in 
the OPD of Figure 7. In OPM, 
subprocesses within a 
containing process are executed 
by default from top to bottom, 
so since Driving appears above 
the Parking the former happens 
first. Obviously, we used here 
information we know from our 
everyday life, as this 
information is not part of the 
original SysML use case 
diagram. Further refinement of 
the Driving process, which 

Figure 4. Driving Conditions unfolded 
diagram in OPM

Figure 3. System Diagram (SD) of the Hybrid 
SUV system in OPM

Figure 5. Operational use cases diagram associated 
with "Operate the Vehicle" in SysML



depicts the rest of the 
information contained 
in the operational use 
cases SyML diagram, is 
brought in the next 
subsection, as it 
contains additional 
information.

System Context, 
Boundaries and Use 
Cases Summary: In 
this subsection we 
presented part of the 
system model 
describing the system 

context and the main use cases in both SysML and 
OPM. Although we captured only a small part of the 
model, we can already make several observations. 
Even though we have been concerned with just one 
aspect of the system, the SysML description already 
required using two types of diagrams—internal block 
diagram, used as the context diagram, and use case 
diagram. Each type has its own graphical format and 
set of symbols. In contrast, the same information was 
expressed in OPM using the single OPM diagram 
type, OPD.

As OPM defines explicit and consistent 
abstraction-refinement mechanisms to manage complexity, the model is presented gradually with
a clear hierarchy of OPDs. Specifically, we saw the top-level diagram (SD) and two of its 
descendant OPDs: Driving Conditions unfolded and Vehicle Using in-zoomed. In SysML, although 
hierarchy among diagrams does exist, e.g., top-level use cases and goal-level use cases, there is 
no built-in structured mechanism to manage the hierarchy as it exists in OPM. With OPM the 
whole system model is the OPD set, which is organized as a directed acyclic graph, so it is 
always clear how diagrams are related to each other, and what is the detail level of each diagram 
in the "big picture". Although these observations were derived from investigating the system 
context and use cases only, they are general and not limited to just this aspect of the model. As 
demonstrated in subsequent subsections, these are typical characteristics of these two languages.

System Behavior – Elaboration
After specifying the system context and its main use cases, we further model and analyze the 

top-level system behavior. Figure 8 shows the OPD in which the Driving process was zoomed 
into. It contains the remaining information from the SysML operational use cases diagram of 
Figure 5 plus part of the state information described in a separate SysML state machine diagram, 
not included in this paper. As the condition link in the OPD shows, the Vehicle Starting
subprocess occurs if the operational status of the vehicle is off. As a result of this subprocess 
occurrence, the vehicle's operational status is changed to operate. This diagram demonstrates for 

Figure 6. The Vehicle Using process in-zoomed in OPM

Figure 7. The Vehicle Operating 
process in-zoomed in OPM



the first time the 
combination of 
objects, processes,
and states in a single 
diagram.

To further model 
the behavior of "start 
the vehicle" use case, 
the reference SysML 
model introduces two 
sequence diagrams: 
(1) "start the vehicle" 
black-box diagram 
(not shown), in which 
the lifelines are at the 

whole system level, and (2) "start the vehicle" white-box diagram (Figure 9), which decomposes 
the lifelines of the Hybrid SUV system into components.

In order to equivalently refine 
the model in OPM, we again zoom 
into the Vehicle Starting process, 
yielding a new OPD, shown in 
Figure 10. The resulting OPD 
combines the details modeled in the 
"black-box" and "white-box" 
SysML sequence diagrams, as well 
as part of  those modeled in an 
additional SysML state machine 
diagram. The OPD also depicts the 
aggregation hierarchy of the 
relevant objects (including the "mid-
level" Power Subsystem object), 
which is missing in the 
aforementioned SysML diagrams. 
Obviously, the OPM diagram looks 
pretty different from the 
corresponding SysML diagrams in 
this case, due to dissimilar graphical 
layout and notation. There are other cases, demonstrated in the next subsection, in which 
diagrams of these two languages look much more similar. In general, structural OPM and SysML 
diagrams will look similar, because they show relation among entities (blocks, objects), while 
procedural (behavioral) OPM and SysML diagrams will look dissimilar, since unlike in OPM, 
there is no single SysML diagram type that shows all the dynamic aspects of the system.

As noted above, OPM supports textual representation of the model complementary to the 
graphical description. The text, described in OPL, is matched with each of the OPDs in the 
model. The OPL text, generated automatically by OPCAT, for the OPD in Figure 10 is listed in 
Figure 11. Corresponding OPL paragraphs are generated for each and every OPD in the model.

Figure 8. The Driving process in-zoomed in OPM

Figure 9. While-box “StartVehicle” sequence 
diagram in SysML



Figure 10. The Vehicle Starting process in-zoomed in OPM

System Behavior Elaboration Summary: In this subsection we focused on system behavior by
elaborating on the previously modeled use cases. The OPM refinement-abstraction mechanism 
(specifically in-zooming) has been employed again several times, resulting in a structured system 
map. The portion of the system model presented in this subsection further demonstrates the 
benefits of this OPM feature, allowing easy navigation and consistency. As the model becomes 
more complex, this advantage becomes more noticeable.

Another characteristic mentioned earlier but illustrated more intensely here is OPM's single 
diagram type approach compared with the model multiplicity method of SysML. Objects, 
processes, and states are modeled together in OPM using the unified Object-Process Diagram, as 
opposed to multiple types of diagrams required for the same task in SysML. The OPM approach 
has several advantages, primarily the ability to model real world systems, where structure and 
behavior need to be shown concurrently. The use of just one type of diagram also makes OPM 
simpler and easier to learn and use. However, languages with multiple diagram types like SysML 
allow using dedicated diagram types for different aspects of the model, possibly making it easier 
to understand diagrams of specific aspects in certain cases.

Both SysML and OPM employ graphical diagrams for model representation. However, OPM 
features also complementary text-based description of the model in human (and machine) 
readable form, namely OPL. As indicated in Grobshtein et al. (2007), the dual visual-textual
modalities representation aids human comprehension of the model. Moreover, the textual 



representation can be helpful in cases where some of the system development stakeholders, such 
as domain experts and non-technical customers, are not familiar with the graphical modeling 
language. Still they are supposed to review and evaluating the model, and approve it or comment 
on it. Since the OPL paragraphs can be generated automatically from the model diagrams by 
software tools (like OPCAT), the visual and textual modalities are always synchronized with no 
additional efforts or overhead.

Figure 11. The OPL paragraph that describes textually the OPD in Figure 10

System Structure – Hierarchy and Interconnection
SysML defines two primary diagram types for structure specification. The first one is Block 

Definition Diagram (BDD), used to describe relationships among blocks, such as hierarchies. 
The second diagram type is Internal Block Diagram (IBD), which describes the internal structure 
of a block, usually through parts and connectors. Figure 12 contain the major components of the 

Hybrid Sport Utility Vehicle exhibits Operational Status.
Operational Status can be off or operate.

Hybrid Sport Utility Vehicle consists of Power Subsystem.
Power Subsystem consists of Power Control Unit and Electrical Power Controller.

Driver is environmental and physical.
Driver handles Ignition Turning.
Vehicle Starting occurs if Operational Status is off.
Vehicle Starting requires Hybrid Sport Utility Vehicle.
Vehicle Starting yields operate Operational Status.
Vehicle Starting zooms into Ignition Turning, Power Control Unit Starting, Electrical Power 
Controller Enabling, and Power Control Unit Operating, as well as Ready Notification, Enable 
Signal, and Start Signal.

Ignition Turning yields Start Signal.
Power Control Unit Starting requires Power Control Unit.
Power Control Unit Starting consumes Start Signal.
Power Control Unit Starting yields Enable Signal.
Electrical Power Controller Enabling requires Electrical Power Controller.
Electrical Power Controller Enabling consumes Enable Signal.
Electrical Power Controller Enabling yields Ready Notification.
Power Control Unit Operating requires Power Control Unit.
Power Control Unit Operating consumes Ready Notification.

Figure 12. Structure of the Hybrid SUV system in SysML



Hybrid SUV system in 
SysML as a Block 
Definition Diagram, while 
Figure 13 is the 
corresponding OPD. These 
two diagrams are very 
similar, capturing the same 
kind of information.

Figure 14 shows how 
the top-level components 
of the system are 
connected together as a 
SysML Internal Block 

Diagram. The corresponding OPD, shown in Figure 15, uses the bidirectional structural relation 
for modeling the relationships 
between the objects, annotated
with the "connected" tag. Here 
too, the corresponding SysML 
and OPM diagrams look 
similar, and they are indeed 
structural as noted above.

System Structure – Hierarchy 
and Interconnection 
Summary: Description of the 
Hybrid SUV major structural 
constructs, namely hierarchies 
and interconnections, yields 
very similar diagrams in SysML 
and OPM. While SysML 
employs two different diagram 
kinds, BDD and IBD, in OPM this can still be expressed with the same single diagram type, 

OPD, using its compact set of
graphical notations. Due to its 
build-in abstraction-refinement 
mechanism, OPM's diagram 
hierarchy is also beneficial in 
the context of system structure. 
For example, the OPD of Figure 
13 is a descendant of SD, the 
top-level OPD, since if refines 
SD by unfolding the Hybrid SUV
object. The same OPD is an 
ancestor of another OPD (not 
provided in this paper), in 
which the Power Subsystem
object is unfolded to expose its 

Figure 13. Structure of the Hybrid SUV system in OPM

Figure 14. Internal structure of the Hybrid SUV in SysML

Figure 15. Internal structure of the Hybrid SUV in OPM



parts. One can drill down the hierarchy as much as needed, until the finest required level of detail 
is reached. 

Case Study Summary and Discussion
Through partial modeling of the Hybrid SUV sample system we have demonstrated and 

analyzed similarities and differences between SysML and OPM, two conceptual systems 
modeling languages. While in some language parts, such as the structural decomposition, we 
found the languages to be similar, in other areas, notably behavior, differences were encountered.

Maybe the most recognizable differentiator between these languages is SysML's model 
multiplicity—the fact that it consists of nine types of diagrams, compared with OPM's single 
diagram type. As illustrated, this factor has various implications on the resulting system model. 
The approach of OPM allows holistic systems modeling with simple and consistent means to 
combine structure and behavior naturally. SysML, on the other hand, advocates the use of
different diagram types for modeling different aspects of the system. As each aspect is modeled 
using a different diagram, SysML can sometimes provide visual representation that is more 
focused on the objective at hand. For instance, sequence diagrams for object interactions provide 
a clear description of the sequence of events and messages exchanged among the participating 
objects. Although dedicated diagrams for certain aspects can be helpful, dealing with a relatively 
large number of diagram types, each with its dedicated set of symbols, renders the language 
complicated. Consequently, the effort to learn the language and understand the diagrams 
depicted in that language increases.

The importance of modeling hierarchies within a system model has been demonstrated in 
both structural and behavioral contexts. The abstraction-refinement mechanisms built into OPM 
provide a consistent framework for managing complexity in a hierarchical manner. While simple 
and intuitive, they provide a powerful way to organize the model and navigate through its detail 
levels. SysML also provides for hierarchical modeling, but it is not as clear and simple as it is in 
OPM. The existence of multiple types of diagrams inevitably adds inherent complexity. 
Appropriate support by software tools may be helpful in this area.

We focused on the three fundamental system model aspects, namely the functional, 
behavioral and structural ones. Model-related requirements management and engineering 
analysis (e.g., performance) are additional aspects, which were given much attention in SysML. 
In accordance with the model multiplicity approach, it is not surprising that SysML support in 
these aspects include dedicated diagram types, namely Requirement Diagram and Parametric 
Diagram. The engineering analysis modeling capabilities supported by SysML through 
parametrics and constraint blocks have no direct equivalent constructs in OPM. It is possible to 
model mathematical expressions in OPM using "regular" objects and processes, as explained and 
demonstrated by Dori (2002). Nevertheless, SysML mechanisms aimed specifically at this aspect 
are usually more suitable and convenient to use. Hence, SysML is currently more attractive in 
modeling systems where significant engineering analysis is required.

SysML supports requirements management by the Requirements Diagram, as well as by 
combining requirements artifacts and other model elements using (possibly other) diagrams. In 
SysML, the connections between different system components and the requirements satisfied by 
them are visualized. OPM does not explicitly include the notion of requirements; however 
OPCAT, OPM-supporting modeling tool, has facilities for requirements traceability and 
management. In contrast to SysML, in OPCAT requirements traceability is done by linking text 
to the graphics. The modeler monitors connections between OPM design artifacts and the 



matching requirements through requirements coverage tables that are built into OPCAT. Unlike 
the SysML requirements/components diagrams, OPM deals with the issue by separating 
traceability information from the graphical representation. It is also possible to treat requirements 
as any other informatical objects in the system. Using this method, modeling semantics such as 
requirements hierarchies, dependencies and interrelations with other model elements can be 
easily performed with the usual OPM building blocks.

Conclusions and Future Work
The modeling of the sample Hybrid SUV system and the resulting analysis and discussion 

show that neither of the examined languages is by all means better than the other. Both SysML 
and OPM have relative strengths and weaknesses, so choosing the appropriate modeling 
language depends on the problem at hand. In OPM, the well-organized hierarchy of the single 
diagram type, OPD, promotes smooth holistic understanding of the system and its environment, 
with concurrent representation of both the structure and the behavior of the system. However,
with OPM it might be more difficult to express certain fine points of a complex system, such as 
those permitted by the large variety of SysML diagrams. Specifically, the requirements and 
parameterics support allow easier modeling of these aspects in SysML. Conversely, a SysML 
model, spread over a number of different diagram types tends to be complicated and requires
considerable time and effort to both create and understand.

Considering the benefits and drawbacks of each of the two languages compared, ways to 
create synergies between them should be explored. One possible approach is to extend SysML 
with some key OPM features. Important OPM features include text description of the model 
(OPL) and a structured hierarchical modeling mechanism. Adding a new diagram type to SysML 
combining structure and behavior, based on the Object-Process Diagram, will enable a more 
holistic understanding of the system's structure and behavior. Furthermore, existence of such 
diagram in SysML can lead to simplification of the language, as it will provide for eliminating 
several diagram types and graphical symbols that will become redundant. These issues should be 
among those considered during the development of the next SysML versions.

Analogically, OPM can also benefit from adopting valuable missing features from SysML. A 
significant aspect to be handled is the modeling engineering analysis, which can be addressed by 
extending OPM capabilities to make it executable. Additional development will be needed to 
incorporate other features supported by SysML, such as certain properties of the requirements 
modeling and missing "fine points" constructs. Moreover, to enable standard data exchange and 
collaboration with SysML-based tools, automatic generation of equivalent SysML model in XMI 
format (OMG 2005) from within the OPM-supporting tool should be investigated.
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