
 

Open Reuse of Component Designs in OPM/Web 

 

 

Iris Reinhartz-Berger 

Technion - Israel Institute 

of Technology 

ieiris@tx.technion.ac.il  

Dov Dori 

Technion - Israel Institute  

of Technology 

dori@ie.technion.ac.il 

Shmuel Katz 

Technion - Israel Institute  

of Technology 

katz@cs.technion.ac.il  
  

 

Abstract 

As system complexity has increased, so has interest in 

reusing software components in early development 

phases. While most current modeling methods support 

design of generic parameterized frameworks or patterns 

and weaving them into specific models, they do not 

support open reuse, i.e., the ability to develop partially 

specified components and refine them in the target 

application. We introduce an open reuse formalism that is 

based on principles from aspect-orientation and 

OPM/Web, an extension of Object-Process Methodology 

for distributed systems and Web applications. Our open 

reuse is accomplished by a three-step process, consisting 

of designing reusable models, creating basic woven 

models, and enhancing their specification. We model a 

reusable component through partially specified 

environmental elements that are bound to concrete 

counterparts when the component is integrated into the 

system under development. Rules for modeling and 

combining components are defined and applied to a Web 

example. 

 

1. Introduction 

There is widespread interest in the use of existing 

software artifacts or knowledge to create new software 

[11]. Such software reuse aims at improving software 

quality and productivity by integrating existing 

components, such as commercial off-the-shelf (COTS) 

products or tested modules from other projects. Early 

software reuse concerned the combination of reusable 

source code components to produce application software 

[14]. The object-oriented paradigm highlighted reusability 

as part of the development process by using classes, 

packages (modules), and the inheritance mechanism as 

primary linguistic vehicles for reuse [3]. The current 

definition of software reuse encompasses all the resources 

used and produced during the development process, 

including reuse of requirements, architecture, design, 

implementation, and documentation.  

We distinguish two reuse categories: closed and open 

reuse. Closed reuse incorporates existing complete, stand-

alone modules or components, such as packages or 

classes, into new applications via the components' 

interfaces [2]. In open reuse, we integrate partially 

specified components into one combined model. Like 

closed reuse, open reuse encompasses the design of 

reusable models and their integration with the system 

under construction. In addition, open reuse enables 

enhancing and optimizing the integrated components 

during the analysis and design phases.  

Most software engineering methods support closed 

reuse by parameterization and binding capabilities, but do 

not deal with open reuse. We suggest a formalism for 

both closed and open reuse using OPM/Web [15], an 

extension to the Object-Process Methodology (OPM) for 

distributed systems and Web applications. OPM [6, 7] 

extends the object-oriented paradigm with a new entity, 

called process, which is a pattern of transformation 

(consumption, generation, or change) that objects 

undergo. This provides OPM with a straightforward way 

for specifying stand-alone processes, which are not 

owned by (or encapsulated in) a specific object and 

therefore cannot abide by the object-oriented 

encapsulation principle.  

Section 2 reviews existing reuse specification 

techniques and argues that they primarily handle closed 

reuse. Section 3 specifies rules for weaving components 

in OPM/Web and discusses the semantics of the resulting 

models, while Section 4 demonstrates the process of 

weaving models on a Web-based example.  

2. Reuse of component designs in modeling  

Current object-oriented approaches, most notably 

UML [13, 16], emphasize the importance of reuse during 

the development process and enable it through classes, 

packages, and the inheritance mechanism. However, once 

the classes and packages have been modeled, they are 

treated as closed, black boxes with interfaces, through 

mailto:ieiris@tx.technion.ac.il
mailto:dori@ie.technion.ac.il
mailto:katz@cs.technion.ac.il


 

which other parts of the model or other models can 

communicate. This approach hinders reusing generic 

models in different contexts. To respond to this challenge, 

AOP [4] introduces the concept of aspect, which 

modularizes the features for a particular concern and 

describes how these features should be woven, i.e., 

incorporated and integrated, into the system model. 

Superimposition language constructs [12] similarly 

extend the functionality of process-oriented systems, 

again cutting across the software architecture. 

Recent attempts have been made to extend the aspect 

notion from programming to software design and 

engineering [1]. Most aspect-oriented modeling is based 

on UML, adding stereotypes to model the new aspect-

oriented concepts. Catalysis [8] is an OMG-compliant 

methodology for component and framework-based 

development. Troll [9] and Composition Patterns [5] 

suggest adding parameterization and binding capabilities 

to UML packages. While these methods handle closed 

reuse, they lack the ability to support the development of 

several components into complete systems. Such support 

is often essential for optimizing and enhancing the design 

of an entire model – a mission that goes beyond binding 

existing components together. 

Object-Process Methodology (OPM) [6, 7] is a suitable 

basis for open reuse, since it integrates concepts from the 

object- and process-oriented approaches within a single 

frame of reference. The elements of the OPM ontology 

are things and links. A thing is a generalization of an 

object and a process – the two basic building blocks of 

any system expressed in OPM. Analogously, links can be 

structural or procedural. Structural links express static 

relations between pairs of objects, such as aggregation 

and generalization. Procedural links connect objects and 

processes to describe the behavior of a system – how 

processes transform objects. OPM manages complex 

system models through two refinement/abstraction 

mechanisms: unfolding/folding, which is used for 

detailing/abstracting the structural parts of a thing, and in-

zooming/out-zooming, which exposes/hides the inner 

details of a thing within its frame. This way OPM enables 

specifying a system to any desired level of detail without 

losing legibility and comprehension of the resulting 

model. The code generated from an OPM model describes 

the system dynamics, not just its skeleton, as is often the 

case with other modeling approaches. The main limitation 

of OPM with respect to reusability is that it is not geared 

towards the integration of a number of semi-specified 

component designs into one model of a complete 

application. 

3. Weaving OPM/Web models 

OPM/Web [15] extends OPM for the domains of 

distributed systems and Web applications. These 

extensions allow characterizing links with specific 

features (objects and/or processes), extending the refining 

mechanisms to increase modularity, separating between 

the definition of a process class and process instances 

(occurrences) of that class to model code migration, and 

adding global data integrity and control constraints to 

express dependence or temporal relations among 

physically separate modules. 0 summarizes the relevant 

symbols of OPM/Web. 
 

Category Name Symbol 

Things Systemic object  

Environmental object  

Systemic process  

Environmental process  

Structural 

Links 

Inheritance  

Characterization  

Aggregation  

Procedural 

Links 

Instrument link  

Result/consumption link  

Effect link  

Environmental effect link  

Condition link  

Invocation link  

  Relevant OPM/Web symbols 
 

In this work, we endow OPM/Web with open reuse 

capability. The open reuse is achieved by a three-step 

process, consisting of (1) designing reusable components, 

(2) integrating these components to create basic woven 

models, and (3) enhancing the basic woven models into 

complete applications. While the first two steps could be 

partially carried out by applying UML, the third step is 

not supported by object-oriented methods, since their 

resulting woven models are structural in nature and closed 

through pre-defined parameters.   

3.1. Designing reusable models 

The specification and design of each reusable model is 

carried out using OPM/Web. A thing (object or process) 

in an OPM/Web model that needs further specification in 

the target system to which it may be bound is defined as 

environmental. In OPM, an environmental thing is 

completely external to the system, as opposed to a 

systemic thing, which is internal to the system. In 

OPM/Web, an environmental thing can have partly 

specified internal structure, which may contain both 

systemic and environmental components. When 

components are woven into one model, each 

environmental thing in the combined model is either 

bound to a specific thing or left as an unbound 

requirement. A component may also include requirements 

related to things in the target system to which it is bound. 

Such requirements are expressed by environmental 

(dashed) links, which connect pairs of environmental 

things. As explained in Section 3.2, an environmental link 

in a reusable component requires the existence of a 

corresponding link in the target system model.  

  

c 

 



 

 
Figure 1. A reusable Time Stamp model 

 

Figure 1 shows an example of a reusable model for 

adding time-stamps to a process execution. The model, 

called Time Stamp, attaches to each Data Item a 

timestamp, Recorded Time. Data Item and Recorded Time 

characterize (are the attributes of) Node. Data Item is 

environmental since it needs to be refined and adapted to 

the various contexts in which this model is reused. 

Recorded Time, on the other hand, is systemic – it is 

internal to the model and will remain the same regardless 

of the context of Data Item. Similarly, Process Executing 

should be adapted to a specific process in the target 

system and is therefore denoted as an environmental 

process, while Time Recording is a systemic process. The 

environmental effect link between Process Executing and 

Data Item implies that this model can be reused only with 

components in which the process bound to Process 

Executing can affect (change the value of) the object 

bound to Data Item.  

Any OPM/Web model is required to abide by intra-

model weaving rules defined below.  

The scaling rule: A systemic thing can only be refined 

(unfolded or in-zoomed) by other systemic things, while 

an environmental thing can be refined by environmental 

or systemic things. In Figure 1, Time-Stamped Executing 

is an environmental process, since it contains an 

environmental process, Process Executing. Similarly, the 

object Node is environmental, since one of its attributes, 

Data Item, is environmental.  

The link attachment rule: Two things in a reusable 

component that are connected by an environmental link 

must both be environmental, while systemic links can 

connect either systemic or environmental things. In Figure 

1, the environmental effect link connects an 

environmental object, Data Item, to an environmental 

process, Process Executing. If this link were replaced by 

a systemic one, then the things in the target model that are 

bound to Data Item and Process Executing would become 

connected by an effect link, even though this link might 

not be explicitly specified in their original model. 

3.2. Creating basic woven models 

Having created a set of OPM/Web components, the 

designer should decide which components are to be 

woven into the target model and how to weave them. 

Each model, be it a reusable component or a target model, 

is contained in a rectangular frame, called a module. 

Usually one module is a generic reusable component and 

the other is the target one and is specific. The resultant 

woven module can be entirely concrete, or it may still 

contain environmental elements, which imply that the 

weaving process is not yet complete. 

The designer can connect each environmental thing of 

an OPM/Web module with an environmental or systemic 

thing of another module. Since each module may contain 

things that need to be bound at different levels of 

refinement, the designer can successively apply the 

appropriate series of refining steps to get the needed 

design portion. The model in Figure 2, for example, 

weaves the model of Figure 1 into a specific DB 

Maintenance model, such that the combined specification 

contains two modules – the Time Stamp Module with 

Time-Stamped Executing in-zoomed, and the DB 

Maintenance Module with DB Handling in-zoomed.  

Generalization-specialization relations are the primary 

means for binding between things in any two different 

modules. This relation gives rise to object-oriented 

inheritance by providing not only for structural object 

inheritance, but also for process inheritance, which is 

behavioral in nature. In process inheritance, the sub-

process class has at least the same interface (i.e., the set of 

procedural links) and behavior (i.e., sub-processes) as the 

super-process class. The interface and behavior of the 

inheriting process class may be extended or restricted. 

This way, things in OPM/Web can inherit not just 

complete classes, as in UML, but also partially specified 

objects or processes. In both inheritance types, multiple 

inheritance is allowed.  

 
Figure 2. The Time Stamp Module woven into the DB 

Maintenance Module 
 

Figure 2 shows three generalization-specialization 

relations: one object inheritance relation – between Data 

Item and Record, and two process inheritance relations – 

one between Process Executing and DB Updating and the 

other between Time-Stamped Executing and DB Handling. 



 

These relations imply that DB Updating affects Record 

and uses Recorded Time as an input.  

3.2.1. Inter-model weaving rules 

Each woven module is required to preserve three inter-

model weaving rules, in addition to the (intra-) scaling 

and link attachment rules. 

The minimal binding rule: Each environmental thing 

in a module must be bound to a corresponding thing in 

another module, either explicitly or implicitly. A 

generalization-specialization relation achieves explicit 

binding, while implicit binding is applicable only to a 

compound environmental thing. A compound thing is an 

object or a process that is further refined and is therefore 

not at the lowest level of detail. For each compound 

environmental thing in the reusable module that is not 

explicitly bound to a thing in the target module, a default 

systemic thing is implicitly generated, including all the 

specific things bound to its environmental constituents. In 

the woven model in Figure 2, Node is not explicitly 

bound, hence a default systemic object is implicitly 

generated for it, including Record. The default object also 

inherits Recorded Time from Node. Likewise, if there 

were no process inheritance relation between Time-

Stamped Executing and DB Handling, then a default 

process would be implicitly generated for Time-Stamped 

Executing, consisting of DB Updating and inheriting Time 

Recording from Time-Stamped Executing. Data Item and 

Process Executing must be explicitly bound to things in 

the target module since they are lowest level things.  

The hierarchy congruence rule: The hierarchy 

structure between environmental things in a reusable 

module must be congruent with that of the things bound 

to them in the target module. As an example, Time-

Stamped Executing in Figure 2 is bound to DB Handling, 

while Process Executing is bound to DB Updating. The 

zooming relation between Time-Stamped Executing and 

Process Executing is maintained in the specific module 

by DB Handling and DB Updating. The hierarchy 

congruence rule disallows binding Time-Stamped 

Executing with Consistency Checking and at the same 

time Process Executing with DB Updating. 

The link precedence rule: The binding of an 

environmental link is implicitly determined from the 

bindings of its connected things. Also, environmental 

links can be bound to systemic links which are at least as 

strong as the environmental according to the link 

precedence order. OPM’s link precedence order 

determines that the consumption/result links are the most 

powerful, followed by effect links, then agent and 

instrument links, and finally condition and event links. 

The environmental effect link between Data Item and 

Process Executing in Figure 2 is implicitly bound to the 

systemic effect link between Record and DB Updating. 

The link precedence rule implies that a legal binding can 

also connect Data Item and Process Executing with an 

object and a process already connected by a consumption 

or result link.  

3.2.2. Semantics of basic woven models 

The semantics of the generalization-specialization 

relation between modules is similar to their semantics 

within a single module. An object can inherit the features 

(attributes and operations) of a partially specified 

(environmental) object. Similarly, a process can inherit 

the behavior (sub-processes) and interface (procedural 

links) of a partially specified (environmental) process. In 

the woven model of Figure 2, Node has two attributes, 

Recorded Time and Record, where the latter inherits from 

Data Item. DB Handling consists of four sub-processes, 

but only DB Updating inherits from Process Executing an 

instrument link to Recorded Time and requires an effect 

link to Record. In other words, DB Updating uses 

Recorded Time as an extra input. 

If different types of links exist between two 

environmental things and their corresponding things in a 

bound module, then the more powerful link (according to 

the link precedence order) prevails. If there were a 

systemic instrument link between Data Item and Process 

Executing in the Time Stamp Module, it would be 

subsumed by the effect link between Record and DB 

Updating, because of the precedence. 

Generalization-specialization relations between 

processes also define a partial execution order between 

the sub-processes of an individual process. The time axis 

in an OPM/Web System Diagram (SD) goes from the top 

of the diagram to its bottom within each in-zoomed 

process. Hence, two independent or concurrent sub-

processes are depicted at the same vertical level. The 

generalization-specialization relations between modules 

merge the partial orders from each module into one 

combined partial order. In Figure 2, there is a total order 

in both the Time Stamp Module (Time Recording and then 

Process Executing) and in the DB Handling Module (DB 

Reporting, then DB Updating and finally Consistency 

Checking). The generalization-specialization relation 

between Process Executing and DB Updating defines a 

partial execution order in the woven model: first Time 

Recording and DB Reporting are independently executed, 

then DB Updating, and finally Consistency Checking. 

The single model constructed by applying the above 

semantics of environmental elements and generalization-

specialization relations is the fully expanded model. The 

woven models can be maintained either as component 

modules, or as fully expanded models.  

3.3. Enhancing basic woven models 

Having created the basic woven model, the system 

architect can continue specifying the combined system in 

a separate layer without affecting the composing modules. 

This layer includes the generalization-specialization 



 

relations between the modules and additional intra- and 

inter-relations. This stage may include reusing aspects, 

integrating stand-alone modules, or modeling new 

requirements following OPM/Web rules. As exemplified 

in Section 4.3, this stage enables optimization and 

minimization of the combined modules as a complete 

application which offers functionality that goes beyond 

that of each of the individual modules.  

4. Reusing OPM/Web models: The 

accelerated search Web-based example 

We use the Accelerated Search System [10] to 

demonstrate the OPM/Web weaving process described in 

Section 3. The Accelerated Search System implements an 

algorithm for improving the performance of a search 

engine over the Web requiring time-consuming search 

algorithms. The design of this system includes two 

models – a reusable one, called Acceleration, and a 

specific one, called Multi-Search. The Acceleration model 

specifies a generic algorithm that reduces the execution 

time of an input-output part of a system by trying first to 

retrieve the output, which is determined by the input, 

from a database. If the entry is not already in the database, 

it activates a process that calculates the sought output and 

records it in the database to accelerate future executions 

of the algorithm with the same input. The Multi-Search 

model implements a new search engine that benefits from 

existing search engines by combining their results and 

ordering them according to a weighted score. We assume 

that the needed Web items are static and rarely changed, 

so the query results remain valid in consequent activations 

of the query with the same input. Previous query results 

can therefore be stored to avoid executing the costly 

search engines. 

4.1. The Acceleration and Multi-Search models 

Figure 3 specifies that Acceleration consists of three 

main steps: searching the DB for an input-output entry, 

retrieving the output if it was found in the database, and 

activating the full process otherwise. The Acceleration 

model contains two environmental objects, Input and 

Output, and one simple lowest-level environmental 

process, Original Processing. The scaling rule implies 

that Accelerating and Full Process Activating are also 

environmental processes. All the other things are 

systemic, as they are internal to the generic model. 

Figure 4 is the top-level diagram of the Multi-Search 

algorithm. It specifies the inputs (Term and Query Result 

Msg) and outputs (Query Msg and Search Result) of the 

algorithm. We could also zoom into Multi Searching sub-

processes that create queries, send them out, and correlate 

the results, but these are not needed for the weaving here.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The Acceleration model. (a) Top-level 
diagram. (b) Accelerating zoomed-in. (c) Full Process 
Activating zoomed-in.  

 

 

 

 

 

 

 

Figure 4. Top level Multi-Search model 

4.2. The basic Acceleration/Multi-Search model 

To improve the response time, we weave the 

Acceleration Module into the Multi-Search Module, so the 

latest searched terms and their results are saved in a local 

database, which is searched before invoking the entire 

Multi-Searching process. Figure 5 shows the basic woven 

Acceleration/Multi Search model with Acceleration 

Module zoomed-into Full Process Activating, and the top- 

level Multi-Search Module. Three generalization-

specialization relations connect the two modules. The 

object class Term is an Input and Search-Result is an 

Output. The third generalization-specialization relation is 

between two process classes, specifying that Multi-

Searching specializes Original-Processing. Full Process 

Activating is implicitly bound to a default systemic 

process that includes just Multi-Searching. These bindings 

are legal according to the inter- and intra-model weaving 

rules.  

If we developed the Acceleration/Multi-Search model 

conventional (by completely specifying the same system 

without weaving any reusable model), the resulting model 

would be specific to the problem hindering reuse. The 

model in Figure 3 enjoys the benefits of generality, which 

makes it reusable for a variety of functions having the 

same core architecture. 

SD 
 

(c) SD1.1 

 
(a) SD 

(b) SD1 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The Acceleration/Multi-Search model  
 

4.3. Further extensions/enhancement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. Adding Log Recording  
 

The equivalent semantics of the woven and fully 

expanded models makes it possible to treat woven models 

as regular OPM/Web models. The designer can continue 

specifying the combined system and integrate other 

reusable models into it. For example, the Log Recording 

Module in Figure 6 includes a Log File along with its Log 

Records and a Recording operation. When weaving the 

module into the Acceleration/Multi-Search Module, Term 

is bound to Input, and the modules are connected with an 

invocation link to denote that Recording is triggered 

through a Multi-Searching process termination event. 

Thus, using the rules and weaving repeatedly, complex 

new systems can be formed from partially specified 

components, supporting both open and closed reuse. 

References 

[1] The Aspect-Oriented Software Engineering Web site. 
http://www.comp.lancs.ac.uk/computing/aop/index.html  

[2] K.S. Barber, T.J. Graser, and S. R. Jernigan, Increasing 

Opportunities for Reuse through Tool and 

Methodology Support for Enterprise-wide 

Requirements Reuse and Evolution. 1st Intel. Conf. on 

Enterprise Information Systems, 1999, pp. 383-390.  

[3] G. Booch, Object-Oriented Analysis and Design with 

Application. Benjamin/Cummings, 1994. 

[4] K. Czarnecki, U. W. Eisenecker, and P. Steyaert, 

Beyond Object: Generative Programming. AOP 

Workshop at ECOOP’97, 1997, pp. 1-8.  

[5] S. Clarke, and R.J. Walker, Composition Patterns: An 

Approach to Designing Reusable Aspects. Intel. Conf. 

on Software Engineering, 2001. 

[6] D. Dori, Object-Process Analysis: Maintaining the 

Balance between System Structure and Behavior. Jour. 

of Logic and Computation, 5, 1995, pp. 227-249. 

[7] D. Dori, Object-Process Methodology - A Holistic 

Systems Paradigm. Springer Verlag, Heidelberg, NY, 

in press, 2002.  

[8] D. D’Souza, and A.C. Wills, Objects, Frameworks and 

Components with UML – The Catalysis Approach. 

Addison-Wesley, 1998. 

[9] S. Eckstein, P. Ahlbrecht, and K. Neumann, Increasing 

Reusability in Information Systems Development by 

Applying Generic Methods. 13th CAiSE, LNCS 2068, 

2001, pp. 251-266. 

[10] Y. Firstenberg, S. Katz, and O. Shmueli, An Object-

Oriented Program Accelerator Impersonation, 

Technion Computer Science Department, Technical 

Report CS-2002-06, 2002. 

[11] W. Frakes, and C. Terry, Software Reuse: Metrics and 

Models. ACM Comp. Surveys, 28, 1996, pp. 415-435. 

[12] S. Katz, A Superimposition Control Construct for 

Distributed Systems. ACM TOPLAS, 15, 1993, pp. 

337-356. 

[13] N. G. Lester, F. G. Wilkie, and D. W. Bustard, 

Applying UML Extensions to Facilitate Software 

Reuse. The Unified Modeling Language - Beyond the 

Notation. LNCS 1618, 1998, pp. 393-405. 

[14] H. Mili, F. Mili, and A. Mili, Reusing Software: Issues 

and Research Directions. IEEE Transactions on 

Software Engineering, 21, 1995, pp. 528-562. 

[15] I. Reinhartz-Berger, D. Dori, and S. Katz, OPM/Web– 

Object-Process Methodology for Developing Web 

Applications. Annals on Software Engineering: OO 

Web-based Software Engineering, 2002 (to appear). 

[16] UML 1.3,  http://www.rational.com/media/uml/ 

resources/documentation/ad99-06-08-ps.zip. 

 
Acceleration Module – 

Full Process Activating of 

Accelerating 

Multi-Search 

Module– 

Top Level 

 
Acceleration Module – 

Full Process Activating  

of Accelerating 

Multi-Search 

Module– 

Top Level 

Acceleration/Multi-Search Module 

Log Recording Module – 

Top Level 

http://www.rational.com/media/uml/%20resources/documentation/ad99-06-08-ps.zip
http://www.rational.com/media/uml/%20resources/documentation/ad99-06-08-ps.zip

