
SMART: System Model Acquisition from
Requirements Text

Dov Dori, Nahum Korda, Avi Soffer, and Shalom Cohen

Technion, Israel institute of Technology

{dori@ie, korda@tx, asoffer@tx, shalom1@tx}.technion.ac.il

Abstract. Modeling of a business system has traditionally been based on free
text documents. This work describes an elaborate experiment that constitutes a
proof of concept to the idea that a system model can be acquired through an
automated process whose input is a corpus of technical free text requirement
documents and whose output is an OPM model, expressed both graphically,
through a set of Object-Process Diagrams, and textually in equivalent Object-
Process Language. Our experiment has yielded a high quality system model
that required a much smaller effort than what would have been needed in the
traditional approach.

1 Introduction
Architecting systems in general and software systems in particular is a tedious task
that consumes significant time and expertise resources. Systematically transforming
unstructured, free text business specification and user requirements into precise and
formal system specifications is a laborious and complex operation, where instead of
focusing on the overall design, one often gets lost in a clutter of details. Automation
could be of great assistance here, not only because it can significantly lower the over-
all effort, but also because it allows system designers to focus on the system over-
view, get the "big picture" much more quickly, and ultimately maximize the overall
efficiency of the system while minimizing its time to market.
While the vision of automating the modeling and architecting processes by extracting
semantics from requirements expressed in free text may seem to make a lot of sense,
a wide semantic gap stands in the way of such automation. On one side of the gap
that we seek to bridge is free natural language text, while on its other side is a formal,
machine "understandable" and processable character stream. Documentation that
serves as a basis for architecting new systems or improving existing ones, such as
business process specifications or user requirements, is formulated in natural lan-
guage that is not even in a machine-readable, let alone machine-understandable for-
mat.

While formalization of freely expressed ideas, concepts, intentions, and desires
into rigorous specifications seems to be beyond the reach of current computing tech-
nologies, not all hope is lost. The emergence of the Semantic Web and ontology en-
gineering technologies may point the way to eventually bridge the semantic gap ob-
stacle. Although it still seems unrealistic to expect complete automation of the system

design, partial, semi-automatic solutions that operate under human supervision may
already be feasible and may prove to be extremely useful.

Our proposed strategy is to start bridging the semantic gap in parallel from its two
sides—the formal side and the natural language (NL) side—as follows:
1. On the formal side of the semantic gap, the need is for a paradigm and a tool that

is capable of human-oriented intuitive expression of complex system function,
structure, and behavior while at the same time being formal to a degree that a
machine can unambiguously process it. Object-Process Methodology (OPM) [1]
is obviously an excellent candidate for the task at hand, since Object-Process
Language (OPL), the textual modality of OPM, utilizes a constrained subset of
English, which brings it a significant step closer to the unconstrained natural lan-
guage that exists on the other side of the gap. The additional advantage of using
OPM is that its two semantically equivalent modalities, one graphic (Ob-
ject-Process Diagram) and the other textual (Object-Process Language), jointly
express the same OPM model. Accordingly, every verbal formulation (OPL) is
automatically paralleled by its graphic presentation, (OPD), and vice versa, such
that complete equivalence between the two presentations is guaranteed at any
point in time.

2. On the NL side of the semantic gap, information extraction technologies will be
utilized in order to achieve the following benefits:
• Extracting from unstructured text elements—entities and links—that are key

concepts for the domain and the problem at hand,
• Detecting and mapping alternative formulations of relevant ontological rela-

tions, and
• Deriving a semi-formalized presentation of the underlying documentation

that could be manually organized into a rigorous formal model of the re-
quired system.

To prove the concept of deriving an OPM model from unstructured technical text,
this paper describes an experiment in which we utilized information extraction tech-
niques in order to automatically generate OPL script—a structured subset of natural
English—from which the corresponding diagrammatic specification in the form of a
set of Object-Process Diagrams (OPDs) was constructed semi-automatically utilizing
the OPM-supporting CASE tool (OPCAT) [2]. The automatically derived OPL sen-
tences served as a basis for modeling the initial requirements. The automatically-
generated initial specification was elaborated upon by the system architect conferring
with the domain expert—the representative of the system beneficiary or user, and
obtained the expert's blessing. This initial OPM-based system specification can be
further developed into a complete formal system design with OPCAT, and automati-
cally documented, converted into a set of UML diagrams if so desired, and imple-
mented as a set of JAVA classes.

The experiment described in this paper is, to the best of our knowledge, a first
successful attempt to construct a system model in a semi-automatic way from the
system's free text documentation of the requirements. The experiment was based on
GRACE (Grid Search and Categorization Engine), a European Community Informa-
tion Society Technology (IST) project [3]. This complex software development pro-
ject combines Grid, ontology engineering, and knowledge management. GRACE was

found to be suitable for our experiment due to its extensive background documenta-
tion, which includes user and system requirements. A subset of this documentation
corpus served as the free natural language text on which the automatic content extrac-
tion and OPM model building was performed.

The rest of the paper is structured as follows: Section 2 includes a review of the
state-of-the-art in automating modeling from free text. This is followed by a descrip-
tion of OPM in Section 3 and application of OPM to model the architecture of our
SMART system in Section 4. The experiment is described in section 5, and section 6
presents our conclusions.

2 Automating Modeling from Text: State of the Art
Architectures of systems and their underlying software provide high-level abstrac-
tions for representing the function, structure, behavior, and key properties of the sys-
tem. A first and crucial phase in system architecting is eliciting, gathering, analyzing,
and engineering the stakeholders' requirements. In spite of the clear and direct rela-
tionships between requirements engineering and system architecture modeling, these
two activities have traditionally been pursued independently from one another.

2.1 From Requirements to Architecture
System requirements include the customer's expectations and vision of the desired
solution of the business problem at hand, and constraints on the solution. The re-
quirements documentation reflects interests of the different system's stakeholders—
customers, endusers, developers, and managers [4]. Requirements deal with concepts,
intentions (both explicit and implicit), goals, alternatives, conflicts, agreements, and
above all—desired functional and non-functional system features and properties.

Architecting a system from its requirements has not yet fully been understood.
The task of system architecting from its requirements is difficult due the complex
nature of the interdependencies and constraints between architectural elements and
requirement elements. A number of techniques have been proposed, though, to assist
in this effort-consuming and poorly understood task .For example, the Component
Bus System, and Properties (CBSP) approach [5, 6], also supported by tools [7, 8], is
an analysis method that operates through classification of system features and proper-
ties as reflected in the requirements and altering their representation using an inter-
mediate language.

Techniques that have been proposed so far to bridge the requirements-design gap
commonly involve human-driven conceptual analysis of the requirements—an itera-
tive, error-prone, and resource-consuming effort for extracting domain-knowledge
related information from the requirements. The CREWS project [9], which makes use
of language processing in scenario-based requirements engineering approach [10],
promotes guidance of the elicitation and validation of requirements that is based on
textual scenarios.

2.2 Working from Business Specification and User Requirements
Another approach to supporting the requirements engineering (RE) process is based
on the fact that natural language plays an important role during the requirements

stage. It is argued [11] that acquisition of application domain knowledge is typically
achieved through language manipulation, either through document and text analyses
or by means of interviews. It has therefore been suggested there that RE should be
supported by a CASE tool that is based on a linguistic approach. Such RE support
environment would generate the conceptual specification from a description of the
problem space provided initially through natural language statements.

A complete and effective RE process, which naturally involves language manipu-
lation, includes the following steps: (1) acquisition of domain-dependent knowledge
using NL statements, an automated version of which [12] applies NL-processing-
based metadata extraction to automatically acquire user preferences, (2) graphic rep-
resentation of the semantic contents of the NL statements, which should be easy to
understand and manipulate, and (3) mapping of the real-world description to a con-
ceptual schema, or a requirements-level system model. Based on this analysis, an
approach for tackling the inherent complexity of the RE process is proposed [13] that
is based on a CASE tool for the requirements engineering process. This CASE tool is
essentially a rule-based expert system, which is a highly technical environment that
requires substantial support in rule generation, adaptation, and checking.

2.3 Natural Language Processing
Industrial practice has shown that NL requirements are easier to evolve, maintain, and
discuss with (possibly non-technical) stakeholders. Recognizing the potential role of
natural language processing (NLP) in the requirements engineering process, efforts
(e.g., [14]) have been made to identify tasks where NLP may be usefully applied. At
the same time, however, a note of caution is sounded by noting the limitations of NLP
in requirements engineering [15].

A number of experiments have been reported on the use of NLP techniques in the
context of systems development. Lexical analysis was used [16] to find abstractions
in unstructured and un-interpreted text. Other studies applied NL parsing and under-
standing techniques to automatic extraction of models from NL requirements [17, 18,
19]. Several specific NLP tools and techniques, including [20, 21], have been intro-
duced for the purpose of analyzing and controlling software requirements. These
techniques rely on lexical analysis to extract abstractions from natural language text
[22]. The use of NLP has also been reported in analogical reasoning technology for
specification reuse and validation [23]. Although the application of NLP techniques
to handling system requirements is appealing, it is often difficult to check and prove
properties, such as correctness, consistency, and completeness on those requirements
[24]. Abstract systems were suggested for detecting such ambiguities and under-
specifications [25] as well as requirement redundancies [26].

When moving from early requirement gathering, in which ideas, concepts, and in-
tentions are expressed with NL, to the analysis phase, the freely expressed NL-based
requirements need to be formalized. They need to be replaced by rigorous specifica-
tions, so coherence, consistency, and feasibility can be reasoned about, at least semi-
formally. Lightweight formal methods were used in [27] for partial validation of NL
requirement documents. Checking properties of models obtained by shallow parsing
of NL-expressed requirements, they concluded that automated analysis of require-
ments expressed in natural language is both feasible and useful.

The conclusion drawn from current research is that the RE process should be sup-
ported by a CASE tool that incorporates a linguistic approach. The tool should facili-
tate an RE-support environment that generates a conceptual specification from a de-
scription of the problem space provided through natural language statements. We
distinguish between two different types of NL sentence analyses. One is the syntactic
analysis, which is based on finding the parts-of-speech in a sentence, including ob-
ject, subject, verb, adjective, adverb, etc. A notable method of syntactic analysis of
this form is Knowledge Query and Manipulation Language (KQML) language, pro-
posed by ARPA Knowledge Sharing Effort in 1992. It uses Knowledge Interchange
Format (KIF) [28] for content description through an ASCII representation of first
order predicate logic using a LISP-like syntax [29]. The other sentence analysis type
is the semantic approach, in which we seek the deep, underlying meaning of what the
sentence expresses in terms of detecting objects in the sentences and relations be-
tween them, or a transformation to an object (its generation, consumption, or change
of state) that a process causes through its occurrence. These two different types of NL
sentence analyses were adopted by [30] to form their Word Class Function Machine
aimed at both the syntactic analysis and semantic analysis of NL. Performance of
these analyses has been an issue for Samuelsson [31] who optimized the analysis and
generation machinery through the use of previously processed training examples [26].

This paper suggests the use of NLP in conjunction with Object-Process Method-
ology (OPM) [1] and its supporting CASE tool (OPCAT) [2] for acquisition of appli-
cation domain knowledge. The proposed approach seeks to extract as much semantics
as possible automatically from a given corpus of related technical documents, such as
requirement documents, and build from this extracted semantics an initial conceptual
model in a semi-automatic way using OPM and its OPCAT support environment. We
next focus on OPM.

3 Object-Process Methodology
Most interesting and challenging systems are those in which structure and behavior
are highly intertwined and hard to separate. Object-Process Methodology (OPM) is a
holistic approach to the modeling, study, and development of systems. It integrates
the object-oriented and process-oriented paradigms into a single frame of reference.
Structure and behavior, the two major aspects that each system exhibits, co-exist in
the same graphic-NL bimodal OPM model without highlighting one at the expense of
suppressing the other.

The elements of the OPM ontology are entities (things and states) and links. A
thing is a generalization of an object and a process—the two basic building blocks of
any system expressed in OPM. Objects are (physical or informatical) things that exist,
while processes are things that transform objects. In a specific point of time, an object
can be exactly in one state, and objects states are changed through occurrences of
processes. Links can be structural or procedural. Structural links express static rela-
tions between pairs of entities. Aggregation, generalization, characterization, and
instantiation are the four fundamental structural relations. Procedural links connect
entities (objects, processes, and states) to describe the behavior of a system. The be-
havior is manifested by processes that interact with objects in three major ways: (1)

processes can transform (generate, consume, or change the state of) objects; (2) ob-
jects can enable processes without being transformed by them; and (3) objects can
trigger events that invoke processes.

3.1 The Bimodal OPM Model Representation
Two semantically equivalent modalities, one graphic and the other textual, jointly
express the same OPM model. A set of inter-related Object-Process Diagrams (OPDs)
constitute the graphical, visual OPM formalism. Each OPM element is denoted in an
OPD by a symbol, and the OPD syntax specifies correct and consistent ways by
which entities can be linked. The Object-Process Language (OPL), a subset of Eng-
lish formally defined by a grammar, is the textual counterpart modality of the graphi-
cal OPD-set. OPL is a dual-purpose language, oriented towards humans as well as
machines. Catering to human needs, OPL is designed as a constrained subset of Eng-
lish, which serves domain experts and system architects engaged in analyzing and
designing a system. Every OPD construct is expressed by a semantically equivalent
OPL sentence or phrase. Designed also for machine interpretation through a well-
defined set of production rules, OPL has an XML-based notation that provides a solid
basis for automatically generating the designed application. This dual representation
of OPM increases the processing capability of humans.

3.2 OPM Refinement and Abstraction Mechanisms
Complexity management aims at balancing the tradeoff between two conflicting re-
quirements: completeness and clarity. Completeness requires that the system details
be stipulated to the fullest extent possible, while the need for clarity imposes an upper
limit on the level of complexity and does not allow for an OPD (or an OPL para-
graph) that is too cluttered or overloaded with entities and links among them. The
seamless, recursive, and selective refinement-abstraction mechanisms of OPM enable
presenting the system at various detail levels without losing the “big picture” and the
comprehension of the system as a whole. The three built-in refinement/abstraction
mechanisms are: (1) unfolding/folding, which is used for refining/abstracting the
structural hierarchy of a thing and is applied by default to objects; (2) in-
zooming/out-zooming, which exposes/hides the inner details of a thing within its
frame and is applied primarily to processes; and (3) state expressing/suppressing,
which exposes/hides the states of an object. Using flexible combinations of these
three mechanisms, the achieved OPM models are consistent by definition.

4 OPM Model of the SMART System
OPM is employed in this research at two levels: one is the specification of the System
Model Acquisition from Requirements Text (SMART) system, and the other is an
example of the GRACE system, which is the outcome of our proof-of-concept ex-
periment. Having introduced the basics of OPM we proceed to utilize it to model the
architecture of the SMART system using OPCAT. The SMART system consists of
various software tools that operate cooperatively in order to produce SMART's de-
sired output.

Figure 1 shows the System Diagram (SD), i.e., the top-level Object-Process Dia-
gram (OPD) of the SMART system. The diagram depicts the high-level structure of
the SMART system, its main process, input and output, and the user, as well as their
inter-relations.

Figure 1 SD – System Diagram (top-level view) of the SMART system OPM model

The graphical description of SMART—the OPD—is backed by corresponding OPL
specification, which OPCAT generates automatically in real time in response to the
user's graphic input. Table 1 presents the OPL paragraph that describes the OPD in
Figure 1.

Table 1 The OPL paragraph describing the SMART system whose OPD is in Figure 1

System Architecting Team handles System Model Acquisition.

SMART consists of Categorization Engine, OPCAT, and OPL Generator.

System Model Acquisition requires System Requirements Unstructured Text,

Categorization Engine, OPCAT, and OPL Generator.

System Model Acquisition yields System Model.

The first sentence in the OPL paragraph expresses the fact that the System Architecting
Team is in charge of, or is involved in the process. As Figure 1 shows, it is connected
by an agent link, which triggers the process System Model Acquisition. The second
sentence expresses the structure of the SMART system. The major components of the
system, Categorization Engine, OPCAT, and OPL Generator, are related to the main Sys-
tem Model Acquisition process by instrument links. The fourth and last sentence in the
OPL paragraph expresses the fact that System Model Acquisition generates as a result
of its occurrence a new object called System Model.
In order to elaborate on the details of the System Model Acquisition process depicted in
Figure 1 we take advantage of OPM's complexity management capability. Zooming
into System Model Acquisition, OPCAT creates a new OPD shown in Figure 2, which

is automatically labeled SD1 – System Model Acquisition in-zoomed. SD1 is one level
lower than SD in the OPD hierarchy.

Figure 2 The in-zoomed System Model Acquisition process of Figure 1 exposes subprocesses
and interim objects

The graphical description of SD1 is backed by another corresponding automatically-
generated OPL paragraph. The major subprocesses of SMART, their order of opera-
tion (top to bottom), and the interim objects—Category List, Relation Set, and OPL
Sentence Set—are obvious from the diagram. The subprocesses and interim objects
are also clearly listed in the third sentence in the OPL paragraph, which reads:

OPM Model Construction zooms into Category Extraction, List Editing, Relation

Formulating, OPL Sentence Generating, and OPD Constructing, as well as OPL

Sentence Set, Relation Set, and Category List.

Drilling down into lower levels in the model hierarchy using OPM's abstrac-
tion/refinement mechanisms (not shown here due to shortage of space) would reveal
further details on the system by showing sub-subprocesses and additional objects'
lower level parts and/or attributes. A detailed description of SMART is provided in
the next section.

5 The Proof-of-Concept SMART Experiment
Our experiment was aimed to provide proof of concept to the possibility of semi-
automatically constructing portions of a model of the system-to-be, as expressed in
free text of a corpus of requirement documents. The following is an account of the

experimental settings and procedures. As proof of concept, the experiment proceeded
while operating various software programs independently in different phases, rather
the attempting to produce a unifying application with a user-friendly graphic inter-
face.

5.1 Automatic Extraction of Categories from Unstructured Text
Our document set of unstructured text consisted of half a dozen free text documents
from the GRACE corpus, with a total size of about 0.5 MB. We developed a LISP-
based, heuristics-directed categorization engine and utilized it to extract categories
from our document set. A category in our context is defined as an idiomatic phrase
(word sequence) reflecting the underlying topics in a given corpus of documents.
Idioms are expressions whose meaning cannot be deduced from the meaning of its
individual constituents, but rather from their consistent use in specific contexts. Table
2 presents a few examples of categories that were automatically extracted from the
unstructured GRACE documentation text by our categorization engine.

Table 2 Examples of categories that were automatically extracted from our GRACE
documentation

Search Results Advanced Searching Knowledge Managing
Content Sources Web Services Query Routing
Search Engine Document Storing Knowledge Sharing
User Profile Document Retrieving Frontend Application
Web Server Content Source Registering

Overall, the categorization engine extracted 109 categories, utilizing only its heuris-
tics. Many domains of human knowledge, in particular sciences, have very detailed
and precise nomenclatures and dictionaries that could be used for that purpose. We
could also calibrate the categorization engine to extract particular categories specified
in an external ontology, taxonomy, or thesaurus. Such combination of unconstrained
and ontology-guided extraction might generate better results, as the unconstrained
categorization could add to the domain vocabulary concepts and expressions that are
specific to a document corpus.

5.2 Manual Editing of the Extracted Categories
SMART is intended for use by system engineers with some knowledge domain or
previous involvement in similar efforts, since manual category editing requires some
domain expertise. The extracted categories were next manually inspected to achieve
the following purposes:

1. Selection of those categories that can serve as things (objects or processes)
in the OPM model, and classifying them as either object or processes. For example,
about half of the extracted things in Table 2 are objects, while the rest are processes.
OPM favors processes in the gerund form, i.e., those that end with the "ing" suffix.
Indeed, all the processes in the table have this form, but this is not necessarily the
case. Fore example, Document Retrieval would be classified as a process, synonym with
Document Retrieving. A counterexample of the word Building, means either the ob-
ject (house) or the process of constructing the house, shows why automatic object-
process classification is difficult (but not impossible) to automate.

2. Clustering alternative formulations for the selected OPM things (for exam-
ple, Search Results and Retrieved Results) based on their semantic similarity, and
3. Optionally adding OPM things that did not show up among the extracted
categories.

An important assistance to the manual editing of categories is the ability of the cate-
gorization engine to present all the sentences from the processed corpus in which a
particular category appears. Using this feature, a system engineer can focus on the
few really relevant instances, in which a particular category occurs, saving the sifting
through hundreds of documentation pages. During this inspection, additional catego-
ries that were not automatically extracted but are nonetheless relevant for the design
may be detected in the text, or may simply come to mind and be manually added.
The system allows semantic clustering, i.e., grouping of categories into clusters that
share similar a meaning. This caters to the variety of natural language formulations
encountered in actual texts. Our experiment has revealed several typical situations in
which such clustering is required:
1. Abbreviations and acronyms (e.g., European Data Grid and EDG),
2. Lexical variations (e.g., search results, retrieved documents, retrieved results),
3. Synonyms (e.g., screen, monitor, display),
4. Morphological variations (e.g., registering, registration), and
5. Orthographic variations (e.g., frontend, front-end, front end).

5.3 Automatic Search of OPM Relations
In order to extract OPL sentences from the unstructured text, SMART utilizes a set of
configurable, predefined templates. Each template consists of two things and the
relation between them, expressed in alternative ways. For example, the result relation
between a process and an object, expressed in OPL by the verb yields, can also occur
as generates, results in, etc. SMART currently utilizes 50 predefined general tem-
plates and 20 domain-specific templates that were detected by inspecting various
contexts in which the selected categories occurred. These 70 templates were applied
to 109 categories organized in 46 clusters. Since not all combinations of things and
relations are allowed (for example, the OPM relation result cannot exist between two
OPM objects from the list of 109 categories, but only between a process and an ob-
ject, and in this order), the original document corpus was tested against a total of
234,320 templates.
We define second order regular expressions as regular expressions, in which the
basic unit is a word rather than a character. Instead of comparing character strings, a
program that uses second order regular expressions compares word sequences. The
program is implemented as a finite-state automaton that operates on suffix-tree index
consisting of tokens from the processed text. To guarantee the required expressive-
ness of the framework, SMART manipulates second order regular expressions, allow-
ing them to be defined on any lexical or grammatical attribute of the processed text,
such as part-of-speech, capitalization, and punctuation. The extraction of OPM rela-
tions is performed with these templates in two modes:
1. Constrained extraction, which is limited only to the pairs of categories defined

as OPM things in the manual editing process, systematically generates couples
and attempts to detect any possible relation between them in the text, and

2. Unconstrained extraction, which allows selection of any single OPM thing and
seeks all possible relations in which it occurs.

5.4 Automatic Generation of OPL Sentences
Since each template has a corresponding OPL formulation, every extracted natural
language sentence can be straight-forwardly translated into an OPL sentence. None-
theless, at this stage it is also possible to reformulate the outcome in order to better
reflect the underlying relations. This transformation is performed in two steps:

Table 3 The OPL paragraph describing the GRACE system whose OPD is in Figure 3.

Search Results consists of Actual Documents.
Knowledge Domain consists of Content Sources.
EDG Application Layer consists of Job Management Element and Data Management Ele-
ment.
 Data Management Element retrieves User Profile.
 Data Management Element and Document Storage Service are interfaced.
 Data Management Element and Search Engine are interfaced.
NDF Repository consists of Documents NDF.
 Documents NDF are transferred to Document Storage Service.
Document Processing Service processes Actual Documents.
Frontend Application transfers Query Request.
Web Server and Frontend Application are interfaced.
Text Indexing requires Search Engine.
Query Routing consumes Query Request, Internal Content Sources, and External Content
Sources.
Query Routing yields Actual Documents.
Downloading requires Document Processing Service.
Downloading consumes External Content Sources.
Downloading yields Actual Documents.
Cashing consumes Actual Documents and External Content Sources.
Cashing yields Content Sources.
Storing consumes Actual Documents.
Storing yields Internal Content Sources.
Retrieving requires Query Request.
Retrieving yields Search Results and Actual Documents.
Accessing requires EDG Application Layer.
Accessing affects NDF Repository and Document Repositories.

1. A custom relation is transformed into a process, for example: cached into is

transformed into Caching, and
2. A complex relation, such as Actual Documents Cached into Document Reposito-

ries, is transformed into two equivalent simple sentences. In our case, (1) Cach-
ing requires Actual Documents and (2) Caching yields Document Repositories.

These transformations do not modify the underlying semantics of the NL sentences
but allow the complex natural language formulations to be and simplified into concise
OPL sentences. The output set of the OPL sentences is listed in Table 3.

5.5 Manual Editing of the Results
The OPL sentences were fed into OPCAT one by one to obtain the OPD, which is
shown in Figure 3 after manual beatification.

Figure 3 The OPD that represents the OPL sentences generated from GRACE free text

Both the OPL sentence set and the OPD are significantly simpler and more digestible
than the hundreds of NL documentation pages from which the model was extracted.
OPCAT allows the results to be edited graphically in order to remove the incorrect
relations, organize the things and the relations into more complex (multi-layered)
structures, add undetected things and relations, etc. The graphic manipulation is much
easier than text editing, and this ability is a great advantage of OPCAT. Since com-
plete equivalence between OPD and OPL presentations is granted, every modification
in the OPD is automatically reflected in the corresponding OPL sentence(s). Several
operations were applied to the results at this final step:
1. Corrections: Some non-semantic corrections were necessary due to the fact that

the extraction did not depict all of the existing or implied relations. These correc-
tions fall into the following categories:

2) Grouping of specialized elements into a general one (e.g., Internal Content
Sources and External Content Sources were grouped into Content Sources),

3) Associating unrelated elements (e.g., Text Indexing was associated with the
Document Processing Service),

4) Renaming elements (e.g., Storing was renamed more specifically as Grid Pub-
lishing),

5) Reapplying a relation transitively from a general object to its specialization or
from a whole to a part (e.g., transferring the instrument link attached to Text In-
dexing from Search Engine to its Document Processing Service part).

2. Additions and Eliminations: Unlike corrections, additions and eliminations may
semantically modify the original output. Additions aim primarily at improving the
detail level and completing the implied structure based on common sense (e.g., by

introducing User as the human agent that interacts with the system). Eliminations
simplify the results by removing superfluous or unessential detail.
3. Scaling: Scaling was applied in order to simplify the results without losing details.
Inspecting the OPD revealed that the documentation implicitly discusses two main
processes: (1) storage of documents into content sources and (2) their retrieval on
demand. The first process was conveniently renamed Grid Publishing and the sec-
ond—Information Retrieval. Figure 4 presents the system diagram (SD)—the top-level
view that resulted from abstracting the original results.

Figure 4 Manually abstracted system diagram of GRACE

From here the editing process that was demonstrated at the top level proceeded
mostly through transferring the extracted things and relations to the most appropriate
level of detail. The final result consists of seven OPDs at three levels of detail.

6 Summary and Conclusions
The experiment described in this paper demonstrates the feasibility of automating the
most critical step in the system engineering process from unstructured business speci-
fication and user requirements to precise and formal system specifications. The ex-
periment was designed as a proof-of-concept offering the first hands-on experience
required for the development of a future full-scale industrial application. We drew the
following be conclusions from the experiment:
1. The proposed methodology significantly reduces the quantity of material that
would otherwise need to be processed manually.
2. Translating the original NL sentences into OPL reduces the initial level of
conceptual complexity. The variety in which a relation may be expressed in NL may
be surprisingly broad, leading to confusion, imprecision, and vagueness. This is typi-
cal if the documentation was written by many authors from various professional

backgrounds. OPL, on the other hand, introduces uniformity, which guarantees that
the relations are expressed in a concise and unambiguous way.
3. The results depend critically on the quality of the processed documentation.
The more architectural information is contained in it, the better the results. Relevant
system components were often successfully extracted from the text as categories, but
very little information regarding their relations with other system components was
actually available. Obviously, no system can extract information that is not there.
4. Even when the results still require significant editing, it is so much easier to
understand and manipulate the dual OPM graphic or even textual presentations than
to work directly with the NL sources.
5. The quality, accuracy, and conciseness of the system architecture obtained
following the SMART process is likely to be higher than that obtained through tradi-
tional model construction due to the discipline OPM introduces.

In order to become more useful, SMART needs significant improvements, in par-
ticular more sophisticated extraction templates and improved performance. Having
provided a proof-of-concept to the viability of automated extraction of system model
from free text, future research and development efforts will focus on enhancing the
level of automation of SMART and testing it against traditional model construction
processes in terms of both model quality and resource expenditure.

References

[1] D. Dori, Object-Process Methodology - A Holistic Systems Paradigm, Springer Verlag,
Berlin, Heidelberg, New York, 2002

[2] D. Dori, I. Reinhartz-Berger, and A. Sturm, Developing Complex Systems with Object-
Process Methodology using OPCAT. Lecture Notes in Computer Science (2813), pp.
570-572, 2003.

[3] GRACE: Grid Search and Categorization Engine. EU RTD Project in the 2002 Fifth
Framework. http://www.grace-ist.org/

[4] B. Nuseibeh and S. Easterbrook. Requirements Engineering: A Roadmap. Proc. Conference

on The Future of Software Engineering, Limerick, Ireland, 35-46, 2000.
[5] A. Egyed, P. Grünbacher, and N. Medvidovic. Refinement and Evolution Issues in Bridging

Requirements and Architectures - The CBSP Approach. Proc. 1st International Work-
shops From Requirements to Architecture, co-located with ICSE'01, Toronto, Canada,
2001

[6] P. Grünbacher, A. Egyed, and N. Medvidovic. Reconciling Software Requirements and
Architectures: The CBSP Approach. Proc. 5th IEEE International Symposium on Re-
quirements Engineering (RE'01), Toronto, Canada, 2001.

[7] P. Grünbacher, A. Egyed, and N. Medvidovic. Dimensions of Concerns in Requirements
Negotiation and Architecture Modeling. The second workshop on multi-dimensional
separation of concerns in software engineering, co-located with ICSE'2000, Limerick,
Ireland, June, 2000.

[8] W. Robinson, and S. Fickas. Automated Support for Requirements Negotiation. Proc.
AAAI-94 Workshop on Models of Conflicts on Conflict Management in Cooperative
Problem Solving, 1994.

[9] J. Ralyte, C. Rolland, and V. Plihon. Method Enhancement by Scenario Based Techniques.

Proc 11th Conference on Advanced Information Systems Engineering (CAiSE'99), Hei-
delberg, Germany, 1999.

[10] C. B, Achour, Linguistic Instruments for the Integration of Scenarios in Requirements
Engineering. Proc. 3rd International Workshop on Requirements Engineering: Founda-
tions of Software Quality (REFSQ'97), Barcelona, 1997.

[11] C. Rolland and C. Proix. Natural Language Approach for Requirements Engineering.
Proc. 4th International Conference on Advanced Information Systems Engineering-
CAiSE'92, Springer-Verlag, Manchester, 1992.

[12] W. Paik, S. Yilmazel, E. Brown, M. Poulin, S. Dubon, and C. Amice, Applying Natural
Language Processing (NLP) Based Metadata Extraction to Automatically Acquire User
Preferences, Knowledge Capture - K-CAP’01, 2001.

[13] S. Si-Said, C. Roland, and G. Grosz. MENTOR: A Computer Aided Requirements Engi-
neering Environment. Proc. 8th International Conference on Advances Information Sys-
tem Engineering, CAiSE'96, Greece, May, 1996 (Lecture Notes in Computer Science,
1080). Springer, 1996

[14] V. Ambriola and V. Gervasi. Processing Natural Language Requirements. Proc. 12th
IEEE Conference on Automated Software Engineering (ASE'97). IEEE Press, 1997.

[15] K. Ryan, The Role of Natural Language in Requirements Engineering. Proc. IEEE Inter-
national Symposium on Requirements Engineering, San Diego, 1993.

[16] L. Goldin, and D.M. Berry. A prototype Natural Language Text Abstraction Finder For
Use In Requirements Elicitation. Automated Software Engineering Journal 4, (4) 375-
412, 1997.

[17] B. Macias, and SG. Pullman. Natural Language Processing for Requirements Specifica-
tion. Safety-Critical Systems. Chapman and Hall: London, 57-59, 1993.

[18] A. Fantechi, S. Gnesi, G. Ristori, M. Carenini, M. Vanocchi, and P. Moreschini. Assisting
Requirement Formalization by Means of Natural Language Translation. Formal Methods
in System Design, 4(3), 243-263. 1994.

[19] N. Juristo, A.M. Moreno, and M. Lopez. How to use Linguistic Instruments for Object-
Oriented Analysis. IEEE Software; 17(3), 80-89, 2000.

[20] B. Macias, and S.G. Pullman. A Method for Controlling the Production of Specifications
in Natural Language. The Computer Journal, 38(4), 310-318, 1995.

[21] R. Nelken and N. Francez. Automatic translation of natural-language system specifica-
tions into temporal logic. Proc. 8th Conference on Computer Aided Verification
(CAV'96), Lecture Notes in Computer Science (1102) 360-371, 1996.

[22] M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, and Y. Vassiliou. Theories Underlying
Requirements Engineering: An Overview of NATURE at Genesis. In: Proc.1st IEEE
Symposium on Requirements Engineering, San Diego, 1993.

[23] A.G. Sutcliffe and N.A.M. Maiden. Use of Domain Knowledge for Requirements Valida-
tion. Proc.Conference on Information System Development Process, 1993.

[24] F. Fabbrini, M. Fusani, V. Gervasi, S. Gnesi, and S. Ruggieri. Achieving Quality in Natu-
ral Language Requirements. Proc. 11th International Software Quality Week, 1998.

[25] C. Huyck and F. Abbas, Natural Language Processing and Requirements Engineering: a
Linguistics Perspective, Proc 1st Asia-Pacific Conference on Software Quality, 2000.

[26] J. Natt, B. Regnell, P. Carlshamre, M. Andersson, and J. Karlsson, A Feasibility Study of
Automated Natural Language Requirements Analysis in Market-Driven Development,
Requirements Engineering 7, 20-33, 2002.

[27] V. Gervasi, and B. Nuseibeh, Lightweight Validation of Natural Language Requirements.
Proc. 4th IEEE International Conference on Requirements Engineering (ICRE), Schaum-
burg, Il, 2000.

[28] M. R. Genesereth, Knowledge Interchange Format (KIF),

http://logic.stanford.edu/kif/kif.html, 1998.
[29] T. Finin and R. Fritzson, KQML as an Agent Communication Language, Proc. 3rd Inter-

national Conference on Information and Knowledge Management (CIKM'94), ACM
Press, 1994.

[30] H. Helbig and S. Hartrumpf, Word Class Functions for Syntactic-Semantic Analysis, Proc.
2nd International Conference on Recent Advances in Natural Language Processing, pp.
312-317, 1997.

[31] Samuelsson, C., Optimizing Analysis and Generation in Natural Language Processing,
Computational Lingustics – ERCIM, 1996.

