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Abstract. Modeling of a business system has traditionally been based on free 
text documents. This work describes an elaborate experiment that constitutes a 
proof of concept to the idea that a system model can be acquired through an 
automated process whose input is a corpus of technical free text requirement 
documents and whose output is an OPM model, expressed both graphically, 
through a set of Object-Process Diagrams, and textually in equivalent Object-
Process Language. Our experiment has yielded a high quality system model 
that required a much smaller effort than what would have been needed in the 
traditional approach.    

1 Introduction 
Architecting systems in general and software systems in particular is a tedious task 
that consumes significant time and expertise resources. Systematically transforming 
unstructured, free text business specification and user requirements into precise and 
formal system specifications is a laborious and complex operation, where instead of 
focusing on the overall design, one often gets lost in a clutter of details. Automation 
could be of great assistance here, not only because it can significantly lower the over-
all effort, but also because it allows system designers to focus on the system over-
view, get the "big picture" much more quickly, and ultimately maximize the overall 
efficiency of the system while minimizing its time to market. 
While the vision of automating the modeling and architecting processes by extracting 
semantics from requirements expressed in free text may seem to make a lot of sense, 
a wide semantic gap stands in the way of such automation. On one side of the gap 
that we seek to bridge is free natural language text, while on its other side is a formal, 
machine "understandable" and processable character stream. Documentation that 
serves as a basis for architecting new systems or improving existing ones, such as 
business process specifications or user requirements, is formulated in natural lan-
guage that is not even in a machine-readable, let alone machine-understandable for-
mat.  

While formalization of freely expressed ideas, concepts, intentions, and desires 
into rigorous specifications seems to be beyond the reach of current computing tech-
nologies, not all hope is lost. The emergence of the Semantic Web and ontology en-
gineering technologies may point the way to eventually bridge the semantic gap ob-
stacle. Although it still seems unrealistic to expect complete automation of the system 



design, partial, semi-automatic solutions that operate under human supervision may 
already be feasible and may prove to be extremely useful.  

Our proposed strategy is to start bridging the semantic gap in parallel from its two 
sides—the formal side and the natural language (NL) side—as follows: 
1. On the formal side of the semantic gap, the need is for a paradigm and a tool that 

is capable of human-oriented intuitive expression of complex system function, 
structure, and behavior while at the same time being formal to a degree that a 
machine can unambiguously process it. Object-Process Methodology (OPM) [1] 
is obviously an excellent candidate for the task at hand, since Object-Process 
Language (OPL), the textual modality of OPM, utilizes a constrained subset of 
English, which brings it a significant step closer to the unconstrained natural lan-
guage that exists on the other side of the gap. The additional advantage of using 
OPM is that its two semantically equivalent modalities, one graphic (Ob-
ject-Process Diagram) and the other textual (Object-Process Language), jointly 
express the same OPM model. Accordingly, every verbal formulation (OPL) is 
automatically paralleled by its graphic presentation, (OPD), and vice versa, such 
that complete equivalence between the two presentations is guaranteed at any 
point in time. 

2. On the NL side of the semantic gap, information extraction technologies will be 
utilized in order to achieve the following benefits: 
• Extracting from unstructured text elements—entities and links—that are key 

concepts for the domain and the problem at hand, 
• Detecting and mapping alternative formulations of relevant ontological rela-

tions, and 
• Deriving a semi-formalized presentation of the underlying documentation 

that could be manually organized into a rigorous formal model of the re-
quired system. 

To prove the concept of deriving an OPM model from unstructured technical text, 
this paper describes an experiment in which we utilized information extraction tech-
niques in order to automatically generate OPL script—a structured subset of natural 
English—from which the corresponding diagrammatic specification in the form of a 
set of Object-Process Diagrams (OPDs) was constructed semi-automatically utilizing 
the OPM-supporting CASE tool (OPCAT) [2]. The automatically derived OPL sen-
tences served as a basis for modeling the initial requirements. The automatically-
generated initial specification was elaborated upon by the system architect conferring 
with the domain expert—the representative of the system beneficiary or user, and 
obtained the expert's blessing. This initial OPM-based system specification can be 
further developed into a complete formal system design with OPCAT, and automati-
cally documented, converted into a set of UML diagrams if so desired, and imple-
mented as a set of JAVA classes.  

The experiment described in this paper is, to the best of our knowledge, a first 
successful attempt to construct a system model in a semi-automatic way from the 
system's free text documentation of the requirements. The experiment was based on 
GRACE (Grid Search and Categorization Engine), a European Community Informa-
tion Society Technology (IST) project [3]. This complex software development pro-
ject combines Grid, ontology engineering, and knowledge management. GRACE was 



found to be suitable for our experiment due to its extensive background documenta-
tion, which includes user and system requirements. A subset of this documentation 
corpus served as the free natural language text on which the automatic content extrac-
tion and OPM model building was performed.  

The rest of the paper is structured as follows: Section 2 includes a review of the 
state-of-the-art in automating modeling from free text. This is followed by a descrip-
tion of OPM in Section 3 and application of OPM to model the architecture of our 
SMART system in Section 4. The experiment is described in section 5, and section 6 
presents our conclusions. 

2 Automating Modeling from Text: State of the Art 
Architectures of systems and their underlying software provide high-level abstrac-
tions for representing the function, structure, behavior, and key properties of the sys-
tem. A first and crucial phase in system architecting is eliciting, gathering, analyzing, 
and engineering the stakeholders' requirements. In spite of the clear and direct rela-
tionships between requirements engineering and system architecture modeling, these 
two activities have traditionally been pursued independently from one another. 

2.1 From Requirements to Architecture 
System requirements include the customer's expectations and vision of the desired 
solution of the business problem at hand, and constraints on the solution. The re-
quirements documentation reflects interests of the different system's stakeholders—
customers, endusers, developers, and managers [4]. Requirements deal with concepts, 
intentions (both explicit and implicit), goals, alternatives, conflicts, agreements, and 
above all—desired functional and non-functional system features and properties.  

Architecting a system from its requirements has not yet fully been understood. 
The task of system architecting from its requirements is difficult due the complex 
nature of the interdependencies and constraints between architectural elements and 
requirement elements. A number of techniques have been proposed, though, to assist 
in this effort-consuming and poorly understood task .For example, the Component 
Bus System, and Properties (CBSP) approach [5, 6], also supported by tools [7, 8], is 
an analysis method that operates through classification of system features and proper-
ties as reflected in the requirements and altering their representation using an inter-
mediate language.  

Techniques that have been proposed so far to bridge the requirements-design gap 
commonly involve human-driven conceptual analysis of the requirements—an itera-
tive, error-prone, and resource-consuming effort for extracting domain-knowledge 
related information from the requirements. The CREWS project [9], which makes use 
of language processing in scenario-based requirements engineering approach [10], 
promotes guidance of the elicitation and validation of requirements that is based on 
textual scenarios.  

2.2 Working from Business Specification and User Requirements 
Another approach to supporting the requirements engineering (RE) process is based 
on the fact that natural language plays an important role during the requirements 



stage. It is argued [11] that acquisition of application domain knowledge is typically 
achieved through language manipulation, either through document and text analyses 
or by means of interviews. It has therefore been suggested there that RE should be 
supported by a CASE tool that is based on a linguistic approach. Such RE support 
environment would generate the conceptual specification from a description of the 
problem space provided initially through natural language statements.  

A complete and effective RE process, which naturally involves language manipu-
lation, includes the following steps: (1) acquisition of domain-dependent knowledge 
using NL statements, an automated version of which [12] applies NL-processing-
based metadata extraction to automatically acquire user preferences, (2) graphic rep-
resentation of the semantic contents of the NL statements, which should be easy to 
understand and manipulate, and (3) mapping of the real-world description to a con-
ceptual schema, or a requirements-level system model. Based on this analysis, an 
approach for tackling the inherent complexity of the RE process is proposed [13] that 
is based on a CASE tool for the requirements engineering process. This CASE tool is 
essentially a rule-based expert system, which is a highly technical environment that 
requires substantial support in rule generation, adaptation, and checking. 

2.3 Natural Language Processing 
Industrial practice has shown that NL requirements are easier to evolve, maintain, and 
discuss with (possibly non-technical) stakeholders. Recognizing the potential role of 
natural language processing (NLP) in the requirements engineering process, efforts 
(e.g., [14]) have been made to identify tasks where NLP may be usefully applied. At 
the same time, however, a note of caution is sounded by noting the limitations of NLP 
in requirements engineering [15].  

A number of experiments have been reported on the use of NLP techniques in the 
context of systems development. Lexical analysis was used [16] to find abstractions 
in unstructured and un-interpreted text. Other studies applied NL parsing and under-
standing techniques to automatic extraction of models from NL requirements [17, 18, 
19]. Several specific NLP tools and techniques, including [20, 21], have been intro-
duced for the purpose of analyzing and controlling software requirements. These 
techniques rely on lexical analysis to extract abstractions from natural language text 
[22]. The use of NLP has also been reported in analogical reasoning technology for 
specification reuse and validation [23]. Although the application of NLP techniques 
to handling system requirements is appealing, it is often difficult to check and prove 
properties, such as correctness, consistency, and completeness on those requirements 
[24]. Abstract systems were suggested for detecting such ambiguities and under-
specifications [25] as well as requirement redundancies [26].  

When moving from early requirement gathering, in which ideas, concepts, and in-
tentions are expressed with NL, to the analysis phase, the freely expressed NL-based 
requirements need to be formalized. They need to be replaced by rigorous specifica-
tions, so coherence, consistency, and feasibility can be reasoned about, at least semi-
formally. Lightweight formal methods were used in [27] for partial validation of NL 
requirement documents. Checking properties of models obtained by shallow parsing 
of NL-expressed requirements, they concluded that automated analysis of require-
ments expressed in natural language is both feasible and useful.  



The conclusion drawn from current research is that the RE process should be sup-
ported by a CASE tool that incorporates a linguistic approach. The tool should facili-
tate an RE-support environment that generates a conceptual specification from a de-
scription of the problem space provided through natural language statements. We 
distinguish between two different types of NL sentence analyses. One is the syntactic 
analysis, which is based on finding the parts-of-speech in a sentence, including ob-
ject, subject, verb, adjective, adverb, etc. A notable method of syntactic analysis of 
this form is Knowledge Query and Manipulation Language (KQML) language, pro-
posed by ARPA Knowledge Sharing Effort in 1992. It uses Knowledge Interchange 
Format (KIF) [28] for content description through an ASCII representation of first 
order predicate logic using a LISP-like syntax [29]. The other sentence analysis type 
is the semantic approach, in which we seek the deep, underlying meaning of what the 
sentence expresses in terms of detecting objects in the sentences and relations be-
tween them, or a transformation to an object (its generation, consumption, or change 
of state) that a process causes through its occurrence. These two different types of NL 
sentence analyses were adopted by [30] to form their Word Class Function Machine 
aimed at both the syntactic analysis and semantic analysis of NL. Performance of 
these analyses has been an issue for Samuelsson [31] who optimized the analysis and 
generation machinery through the use of previously processed training examples [26]. 

This paper suggests the use of NLP in conjunction with Object-Process Method-
ology (OPM) [1] and its supporting CASE tool (OPCAT) [2] for acquisition of appli-
cation domain knowledge. The proposed approach seeks to extract as much semantics 
as possible automatically from a given corpus of related technical documents, such as 
requirement documents, and build from this extracted semantics an initial conceptual 
model in a semi-automatic way using OPM and its OPCAT support environment. We 
next focus on OPM. 

3 Object-Process Methodology 
Most interesting and challenging systems are those in which structure and behavior 
are highly intertwined and hard to separate. Object-Process Methodology (OPM) is a 
holistic approach to the modeling, study, and development of systems. It integrates 
the object-oriented and process-oriented paradigms into a single frame of reference. 
Structure and behavior, the two major aspects that each system exhibits, co-exist in 
the same graphic-NL bimodal OPM model without highlighting one at the expense of 
suppressing the other. 

The elements of the OPM ontology are entities (things and states) and links. A 
thing is a generalization of an object and a process—the two basic building blocks of 
any system expressed in OPM. Objects are (physical or informatical) things that exist, 
while processes are things that transform objects. In a specific point of time, an object 
can be exactly in one state, and objects states are changed through occurrences of 
processes. Links can be structural or procedural. Structural links express static rela-
tions between pairs of entities. Aggregation, generalization, characterization, and 
instantiation are the four fundamental structural relations. Procedural links connect 
entities (objects, processes, and states) to describe the behavior of a system. The be-
havior is manifested by processes that interact with objects in three major ways: (1) 



processes can transform (generate, consume, or change the state of) objects; (2) ob-
jects can enable processes without being transformed by them; and (3) objects can 
trigger events that invoke processes. 

3.1 The Bimodal OPM Model Representation 
Two semantically equivalent modalities, one graphic and the other textual, jointly 
express the same OPM model. A set of inter-related Object-Process Diagrams (OPDs) 
constitute the graphical, visual OPM formalism. Each OPM element is denoted in an 
OPD by a symbol, and the OPD syntax specifies correct and consistent ways by 
which entities can be linked. The Object-Process Language (OPL), a subset of Eng-
lish formally defined by a grammar, is the textual counterpart modality of the graphi-
cal OPD-set. OPL is a dual-purpose language, oriented towards humans as well as 
machines. Catering to human needs, OPL is designed as a constrained subset of Eng-
lish, which serves domain experts and system architects engaged in analyzing and 
designing a system. Every OPD construct is expressed by a semantically equivalent 
OPL sentence or phrase. Designed also for machine interpretation through a well-
defined set of production rules, OPL has an XML-based notation that provides a solid 
basis for automatically generating the designed application. This dual representation 
of OPM increases the processing capability of humans.  

3.2 OPM Refinement and Abstraction Mechanisms 
Complexity management aims at balancing the tradeoff between two conflicting re-
quirements: completeness and clarity. Completeness requires that the system details 
be stipulated to the fullest extent possible, while the need for clarity imposes an upper 
limit on the level of complexity and does not allow for an OPD (or an OPL para-
graph) that is too cluttered or overloaded with entities and links among them. The 
seamless, recursive, and selective refinement-abstraction mechanisms of OPM enable 
presenting the system at various detail levels without losing the “big picture” and the 
comprehension of the system as a whole. The three built-in refinement/abstraction 
mechanisms are: (1) unfolding/folding, which is used for refining/abstracting the 
structural hierarchy of a thing and is applied by default to objects; (2) in-
zooming/out-zooming, which exposes/hides the inner details of a thing within its 
frame and is applied primarily to processes; and (3) state expressing/suppressing, 
which exposes/hides the states of an object. Using flexible combinations of these 
three mechanisms, the achieved OPM models are consistent by definition. 

4 OPM Model of the SMART System 
OPM is employed in this research at two levels: one is the specification of the System 
Model Acquisition from Requirements Text (SMART) system, and the other is an 
example of the GRACE system, which is the outcome of our proof-of-concept ex-
periment. Having introduced the basics of OPM we proceed to utilize it to model the 
architecture of the SMART system using OPCAT. The SMART system consists of 
various software tools that operate cooperatively in order to produce SMART's de-
sired output.  



Figure 1 shows the System Diagram (SD), i.e., the top-level Object-Process Dia-
gram (OPD) of the SMART system. The diagram depicts the high-level structure of 
the SMART system, its main process, input and output, and the user, as well as their 
inter-relations. 

 
Figure 1 SD – System Diagram (top-level view) of the SMART system OPM model 

The graphical description of SMART—the OPD—is backed by corresponding OPL 
specification, which OPCAT generates automatically in real time in response to the 
user's graphic input. Table 1 presents the OPL paragraph that describes the OPD in 
Figure 1.  

Table 1 The OPL paragraph describing the SMART system whose OPD is in Figure 1 

System Architecting Team handles System Model Acquisition. 

SMART consists of Categorization Engine, OPCAT, and OPL Generator. 

System Model Acquisition requires System Requirements Unstructured Text, 

Categorization Engine, OPCAT, and OPL Generator. 

System Model Acquisition yields System Model. 

The first sentence in the OPL paragraph expresses the fact that the System Architecting 
Team is in charge of, or is involved in the process. As Figure 1 shows, it is connected 
by an agent link, which triggers the process System Model Acquisition. The second 
sentence expresses the structure of the SMART system. The major components of the 
system, Categorization Engine, OPCAT, and OPL Generator, are related to the main Sys-
tem Model Acquisition process by instrument links. The fourth and last sentence in the 
OPL paragraph expresses the fact that System Model Acquisition generates as a result 
of its occurrence a new object called System Model. 
In order to elaborate on the details of the System Model Acquisition process depicted in 
Figure 1 we take advantage of OPM's complexity management capability. Zooming 
into System Model Acquisition, OPCAT creates a new OPD shown in Figure 2, which 



is automatically labeled SD1 – System Model Acquisition in-zoomed. SD1 is one level 
lower than SD in the OPD hierarchy. 

 
Figure 2 The in-zoomed System Model Acquisition process of Figure 1 exposes subprocesses 
and interim objects 

The graphical description of SD1 is backed by another corresponding automatically-
generated OPL paragraph. The major subprocesses of SMART, their order of opera-
tion (top to bottom), and the interim objects—Category List, Relation Set, and OPL 
Sentence Set—are obvious from the diagram. The subprocesses and interim objects 
are also clearly listed in the third sentence in the OPL paragraph, which reads: 

OPM Model Construction zooms into Category Extraction, List Editing, Relation 

Formulating, OPL Sentence Generating, and OPD Constructing, as well as OPL 

Sentence Set, Relation Set, and Category List. 

Drilling down into lower levels in the model hierarchy using OPM's abstrac-
tion/refinement mechanisms (not shown here due to shortage of space) would reveal 
further details on the system by showing sub-subprocesses and additional objects' 
lower level parts and/or attributes. A detailed description of SMART is provided in 
the next section. 

5 The Proof-of-Concept SMART Experiment  
Our experiment was aimed to provide proof of concept to the possibility of semi-
automatically constructing portions of a model of the system-to-be, as expressed in 
free text of a corpus of requirement documents. The following is an account of the 



experimental settings and procedures. As proof of concept, the experiment proceeded 
while operating various software programs independently in different phases, rather 
the attempting to produce a unifying application with a user-friendly graphic inter-
face. 

5.1 Automatic Extraction of Categories from Unstructured Text 
Our document set of unstructured text consisted of half a dozen free text documents 
from the GRACE corpus, with a total size of about 0.5 MB. We developed a LISP-
based, heuristics-directed categorization engine and utilized it to extract categories 
from our document set. A category in our context is defined as an idiomatic phrase 
(word sequence) reflecting the underlying topics in a given corpus of documents. 
Idioms are expressions whose meaning cannot be deduced from the meaning of its 
individual constituents, but rather from their consistent use in specific contexts. Table 
2 presents a few examples of categories that were automatically extracted from the 
unstructured GRACE documentation text by our categorization engine. 

Table 2 Examples of categories that were automatically extracted from our GRACE 
documentation 

Search Results Advanced Searching Knowledge Managing 
Content Sources Web Services Query Routing 
Search Engine Document Storing Knowledge Sharing 
User Profile Document Retrieving  Frontend Application 
Web Server Content Source Registering  

Overall, the categorization engine extracted 109 categories, utilizing only its heuris-
tics. Many domains of human knowledge, in particular sciences, have very detailed 
and precise nomenclatures and dictionaries that could be used for that purpose. We 
could also calibrate the categorization engine to extract particular categories specified 
in an external ontology, taxonomy, or thesaurus. Such combination of unconstrained 
and ontology-guided extraction might generate better results, as the unconstrained 
categorization could add to the domain vocabulary concepts and expressions that are 
specific to a document corpus. 

5.2 Manual Editing of the Extracted Categories 
SMART is intended for use by system engineers with some knowledge domain or 
previous involvement in similar efforts, since manual category editing requires some 
domain expertise. The extracted categories were next manually inspected to achieve 
the following purposes: 

1. Selection of those categories that can serve as things (objects or processes) 
in the OPM model, and classifying them as either object or processes. For example, 
about half of the extracted things in Table 2 are objects, while the rest are processes. 
OPM favors processes in the gerund form, i.e., those that end with the "ing" suffix. 
Indeed, all the processes in the table have this form, but this is not necessarily the 
case. Fore example, Document Retrieval would be classified as a process, synonym with 
Document Retrieving. A counterexample of the word Building, means either the ob-
ject (house) or the process of constructing the house, shows why automatic object-
process classification is difficult (but not impossible) to automate.  



2. Clustering alternative formulations for the selected OPM things (for exam-
ple, Search Results and Retrieved Results) based on their semantic similarity, and 
3. Optionally adding OPM things that did not show up among the extracted 
categories. 

An important assistance to the manual editing of categories is the ability of the cate-
gorization engine to present all the sentences from the processed corpus in which a 
particular category appears. Using this feature, a system engineer can focus on the 
few really relevant instances, in which a particular category occurs, saving the sifting 
through hundreds of documentation pages. During this inspection, additional catego-
ries that were not automatically extracted but are nonetheless relevant for the design 
may be detected in the text, or may simply come to mind and be manually added. 
The system allows semantic clustering, i.e., grouping of categories into clusters that 
share similar a meaning. This caters to the variety of natural language formulations 
encountered in actual texts. Our experiment has revealed several typical situations in 
which such clustering is required: 
1. Abbreviations and acronyms (e.g., European Data Grid and EDG), 
2. Lexical variations (e.g., search results, retrieved documents, retrieved results), 
3. Synonyms (e.g., screen, monitor, display), 
4. Morphological variations (e.g., registering, registration), and 
5. Orthographic variations (e.g., frontend, front-end, front end). 

5.3 Automatic Search of OPM Relations 
In order to extract OPL sentences from the unstructured text, SMART utilizes a set of 
configurable, predefined templates. Each template consists of two things and the 
relation between them, expressed in alternative ways. For example, the result relation 
between a process and an object, expressed in OPL by the verb yields, can also occur 
as generates, results in, etc. SMART currently utilizes 50 predefined general tem-
plates and 20 domain-specific templates that were detected by inspecting various 
contexts in which the selected categories occurred. These 70 templates were applied 
to 109 categories organized in 46 clusters. Since not all combinations of things and 
relations are allowed (for example, the OPM relation result cannot exist between two 
OPM objects from the list of 109 categories, but only between a process and an ob-
ject, and in this order), the original document corpus was tested against a total of 
234,320 templates. 
We define second order regular expressions as regular expressions, in which the 
basic unit is a word rather than a character. Instead of comparing character strings, a 
program that uses second order regular expressions compares word sequences. The 
program is implemented as a finite-state automaton that operates on suffix-tree index 
consisting of tokens from the processed text. To guarantee the required expressive-
ness of the framework, SMART manipulates second order regular expressions, allow-
ing them to be defined on any lexical or grammatical attribute of the processed text, 
such as part-of-speech, capitalization, and punctuation. The extraction of OPM rela-
tions is performed with these templates in two modes: 
1. Constrained extraction, which is limited only to the pairs of categories defined 

as OPM things in the manual editing process, systematically generates couples 
and attempts to detect any possible relation between them in the text, and 



2. Unconstrained extraction, which allows selection of any single OPM thing and 
seeks all possible relations in which it occurs. 

5.4 Automatic Generation of OPL Sentences 
Since each template has a corresponding OPL formulation, every extracted natural 
language sentence can be straight-forwardly translated into an OPL sentence. None-
theless, at this stage it is also possible to reformulate the outcome in order to better 
reflect the underlying relations. This transformation is performed in two steps: 

Table 3 The OPL paragraph describing the GRACE system whose OPD is in Figure 3. 

Search Results consists of Actual Documents. 
Knowledge Domain consists of Content Sources. 
EDG Application Layer consists of Job Management Element and Data Management Ele-
ment. 
            Data Management Element retrieves User Profile. 
            Data Management Element and Document Storage Service are interfaced. 
            Data Management Element and Search Engine are interfaced. 
NDF Repository consists of Documents NDF. 
            Documents NDF are transferred to Document Storage Service. 
Document Processing Service processes Actual Documents. 
Frontend Application transfers Query Request. 
Web Server and Frontend Application are interfaced. 
Text Indexing requires Search Engine. 
Query Routing consumes Query Request, Internal Content Sources, and External Content 
Sources. 
Query Routing yields Actual Documents. 
Downloading requires Document Processing Service. 
Downloading consumes External Content Sources. 
Downloading yields Actual Documents. 
Cashing consumes Actual Documents and External Content Sources. 
Cashing yields Content Sources. 
Storing consumes Actual Documents. 
Storing yields Internal Content Sources. 
Retrieving requires Query Request. 
Retrieving yields Search Results and Actual Documents. 
Accessing requires EDG Application Layer. 
Accessing affects NDF Repository and Document Repositories.  
 
1. A custom relation is transformed into a process, for example: cached into is 

transformed into Caching, and 
2. A complex relation, such as Actual Documents Cached into Document Reposito-

ries, is transformed into two equivalent simple sentences. In our case, (1) Cach-
ing requires Actual Documents and (2) Caching yields Document Repositories. 

These transformations do not modify the underlying semantics of the NL sentences 
but allow the complex natural language formulations to be and simplified into concise 
OPL sentences. The output set of the OPL sentences is listed in Table 3. 

5.5 Manual Editing of the Results 
The OPL sentences were fed into OPCAT one by one to obtain the OPD, which is 
shown in Figure 3 after manual beatification. 



 
Figure 3 The OPD that represents the OPL sentences generated from GRACE free text  

Both the OPL sentence set and the OPD are significantly simpler and more digestible 
than the hundreds of NL documentation pages from which the model was extracted. 
OPCAT allows the results to be edited graphically in order to remove the incorrect 
relations, organize the things and the relations into more complex (multi-layered) 
structures, add undetected things and relations, etc. The graphic manipulation is much 
easier than text editing, and this ability is a great advantage of OPCAT. Since com-
plete equivalence between OPD and OPL presentations is granted, every modification 
in the OPD is automatically reflected in the corresponding OPL sentence(s). Several 
operations were applied to the results at this final step: 
1. Corrections: Some non-semantic corrections were necessary due to the fact that 

the extraction did not depict all of the existing or implied relations. These correc-
tions fall into the following categories: 

2) Grouping of specialized elements into a general one (e.g., Internal Content 
Sources and External Content Sources were grouped into Content Sources), 

3) Associating unrelated elements (e.g., Text Indexing was associated with the 
Document Processing Service), 

4) Renaming elements (e.g., Storing was renamed more specifically as Grid Pub-
lishing), 

5) Reapplying a relation transitively from a general object to its specialization or 
from a whole to a part (e.g., transferring the instrument link attached to Text In-
dexing from Search Engine to its Document Processing Service part). 

2. Additions and Eliminations: Unlike corrections, additions and eliminations may 
semantically modify the original output. Additions aim primarily at improving the 
detail level and completing the implied structure based on common sense (e.g., by 



introducing User as the human agent that interacts with the system). Eliminations 
simplify the results by removing superfluous or unessential detail. 
3. Scaling: Scaling was applied in order to simplify the results without losing details. 
Inspecting the OPD revealed that the documentation implicitly discusses two main 
processes: (1) storage of documents into content sources and (2) their retrieval on 
demand. The first process was conveniently renamed Grid Publishing and the sec-
ond—Information Retrieval. Figure 4 presents the system diagram (SD)—the top-level 
view that resulted from abstracting the original results. 
 

 
Figure 4  Manually abstracted system diagram of GRACE 

From here the editing process that was demonstrated at the top level proceeded 
mostly through transferring the extracted things and relations to the most appropriate 
level of detail. The final result consists of seven OPDs at three levels of detail.  

6 Summary and Conclusions 
The experiment described in this paper demonstrates the feasibility of automating the 
most critical step in the system engineering process from unstructured business speci-
fication and user requirements to precise and formal system specifications. The ex-
periment was designed as a proof-of-concept offering the first hands-on experience 
required for the development of a future full-scale industrial application. We drew the 
following be conclusions from the experiment: 
1. The proposed methodology significantly reduces the quantity of material that 
would otherwise need to be processed manually.  
2. Translating the original NL sentences into OPL reduces the initial level of 
conceptual complexity. The variety in which a relation may be expressed in NL may 
be surprisingly broad, leading to confusion, imprecision, and vagueness. This is typi-
cal if the documentation was written by many authors from various professional 



backgrounds. OPL, on the other hand, introduces uniformity, which guarantees that 
the relations are expressed in a concise and unambiguous way. 
3. The results depend critically on the quality of the processed documentation. 
The more architectural information is contained in it, the better the results. Relevant 
system components were often successfully extracted from the text as categories, but 
very little information regarding their relations with other system components was 
actually available. Obviously, no system can extract information that is not there. 
4. Even when the results still require significant editing, it is so much easier to 
understand and manipulate the dual OPM graphic or even textual presentations than 
to work directly with the NL sources.  
5. The quality, accuracy, and conciseness of the system architecture obtained 
following the SMART process is likely to be higher than that obtained through tradi-
tional model construction due to the discipline OPM introduces. 

In order to become more useful, SMART needs significant improvements, in par-
ticular more sophisticated extraction templates and improved performance. Having 
provided a proof-of-concept to the viability of automated extraction of system model 
from free text, future research and development efforts will focus on enhancing the 
level of automation of SMART and testing it against traditional model construction 
processes in terms of both model quality and resource expenditure.  
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