Domain Modeling with Object-Process Methodology

Arnon Sturm', Dov DoriZ, Onn Shehory3

'Department of Information Systems Engineering, Ben Gurion University of the Negev,
Beer Sheva, 84105, Israel
sturm@bgu.ac.il
% Faculty of Industrial Engineering and Management, Technion — Israel Institute of Tech-
nology, Haifa, 32000, Israel
dori@ie.technion.ac.il
3 IBM Haifa Research Lab, Haifa University Campus, Haifa, 31905, Israel
onn@il .ibm.com

Abstract. Domain engineering can simplify the development of software sys-
tems in specific domains. During domain analysis, the first step of domain en-
gineering, the domain is modeled in a reusable manner. Most domain analysis
approaches suffer from low accessibility, limited expressiveness, and weak for-
mality. In this paper we present a formal, accessible and expressive approach to
domain analysis. We do that by extending Object-Process Methodology (OPM)
to support domain analysis. We performed an experiment to verify that the pro-
posed extension improves the model quality compared to quality arrived at
without the extension. Our experimental results show that, when presented with
a set of requirements, subjects that used OPM with the domain analysis exten-
sion arrived at a system model which is better than the system model arrived at
by subjects that used OPM alone.

1. Introduction

Domain engineering is concerned with building reusable software core assets and
components in a specific domain of human interest [1,3]. Software reuse is viewed as
a way of reducing product cycle time, thereby allowing industry to quickly deliver
new products to the market [13]. Software reuse, of which domain engineering is an
important factor, has therefore become a major goal for many organizations who seek
to shorten time-to-market.

Domain engineering activities include domain analysis, domain design, and do-
main implementation. In this paper, we focus on domain analysis and how to best use
it for modeling applications within a specific domain. Domain analysis can be defined
as a process by which information used in developing software systems in a specific
domain is identified, captured, and organized with the purpose of making it reusable
when creating new systems in that domain. Domain analysis concerns the identifica-
tion of a domain (or a set of related domains) and capturing the domain ontology and
its variations within the domain. Subsequent stages of domain engineering, namely
domain design and domain implementation are concerned with mechanisms for trans-
lating the requirements into systems that are made up of components with the intent

of reusing these components to the highest extent possible. In a more refined formula-
tion, domain analysis is the activity of identifying objects and operations of a class of
similar systems in a particular domain [29]. Domain analysis should "carefully bound
the domain being considered, consider commonalities and differences of the systems
in the domain, organize an understanding of the relationships between the various
elements in the domain, and represent this understanding in a useful way" [1]. Do-
main analysis may be followed by the construction of a generic, reusable code and
even a domain code generator [2].

Several methods have been developed to support domain analysis, but these meth-
ods suffer from the following weaknesses. (1) They lack formality, rendering valida-
tion of a domain-specific application against its domain model difficult to perform.
(2) They require the use of several views for both domain specification and applica-
tion specification, resulting in limited accessibility. (3) They address primarily the
static characteristics and constraints of the domain, but their treatment of the domain's
dynamic aspect is limited.

The Application-based Domain Modeling (ADOM) approach [23, 27] addresses
some of the above mentioned problems. This approach treats a domain as a bona fide
large application that needs to be modeled before systems in that domain are specified
and designed. The domain structure and behavior thus modeled serve to define and
enforce static and dynamic constraints on models of application in that domain. The
ADOM approach consists of three-layers: (1) the language layer, which handles mod-
eling language ontologies and their constraints, (2) the domain layer, which holds the
building elements of domains and the relations among them, and (3) the application
layer, which consists of domain-specific systems. The ADOM approach further de-
fines dependency and enforcement relations between these layers. While ADOM
builds on UML as the modeling language, its developers note that it can be applied
using other modeling language as well.

In this paper, we validate the suitability of the ADOM approach to Object-Process
Methodology (OPM) [5], which is an integrated approach to the study and develop-
ment of systems. As a general-purpose system modeling method, OPM has been used
to model systems in various domains, including pattern recognition in mechanical
engineering drawings [6], computer integrated manufacturing documentation and
inspection [7], and web application [20]. These systems were modeled without first
devising a domain-specific ontology infrastructure. OPM was selected as the alterna-
tive modeling technique due to its supremacy over UML with respect to comprehen-
sion and construction of system models. This has been shown experimentally in [18,
21].

The contribution of this paper is threefold. First, we extend OPM with facilities
and ready-to-use domain building blocks to support domain engineering principles
for developing domain-specific applications. These facilities make OPM more acces-
sible and efficient for modeling domain-specific systems and products. Second, we
validate the suitability of the ADOM approach to modeling languages other than
UML. Third, we experiment and provide an empirical proof of the advantage of using
the ADOM-OPM-based approach over using the generic version of OPM.

The rest of this paper is organized as follows. In Section 2 we review work related
to domain analysis. In Section 3 we present the ADOM approach and Section 4 intro-

duces Object-Process Methodology. Section 5 introduces the ADOM-OPM extension
for domain analysis and demonstrates its use within the domain of access control
system. In Section 6 we describe an experiment we performed in order to establish
the suitability of ADOM-OPM for domain modeling compared with OPM and report
the results. Section 7 concludes with summary and future research.

2. Related Work

Research activities on domain engineering in general and domain analysis in particu-
lar, carried out over the last decade can be divided into two major categories: (1)
focusing on domain artifacts and their use during application construction and (2)
using the domain model as a template and infrastructure for application construction
and validation.

The first category includes works such as [13], which proposes a domain analysis
process that is based on multiple views. It uses Object Modeling Technique [24]
notations to produce a domain-specific framework and domain-specific components.
In [29] a domain analysis and framework-based software development called Sher-
lock that is based on Feature-Oriented Domain Analysis (FODA) [12] is proposed.
FODA activities include context definition, domain characterization, data analysis
and modeling, and reusable architecture definition. A specific system model makes
use mostly of the reusable architecture definitions. A domain modeling method based
on multi-views [11] suggests that a specific system be derived by tailoring the domain
model according to the features desired in that system. In [14], an extension to UML
that supports domain engineering is proposed. This extension includes a special
stereotype, which indicates that a class may be altered within a specific system. The
extension is demonstrated by applying it to the UML class diagram, but none of
UML's dynamic diagrams is involved in this extension.

Among works in the second category, [19] proposes building reusable repositories
and architectures which consist of correlated component classes, connections, con-
straints, and rationales. Validation of a system model makes use of the domain model,
which serves as a basis for checking that no constraint has been violated. In [15] a
metamodeling technique for building a domain-specific model has been demon-
strated. The approach uses UML and OCL to define the syntax, semantics, and pres-
entation of the application models following the domain metamodel. The application
analysis uses the set of models from the domain metamodel, with which one can
validate the consistency and integrity of the system model [4]. Alternatives for adapt-
ing UML to a specific domain include using the metamodeling technique appear in
[16, 25, 28]. Having recognized the need for domain specific models, UML has been
also augmented with an extension mechanism to support such models. This mecha-
nism includes three elements: stereotypes, tag definitions, and constraints [17].

The ADOM approach [23, 27] advocates handling the domain as a regular applica-
tion as will be discussed in Section 3. For standardization reasons UML serves as the
modeling language. In spite of UML’s prevalence, applying the OO concept in gen-
eral and UML in particular to domain modeling involves drawbacks that include
increased complexity, reduced accessibility, and lack of expressive power regarding

modeling of the system’s behavior and correlating it with the system’s static aspect
[18, 21, 22, 26]. To avoid these drawbacks, in this work we elected to use Object-
Process Methodology as the basis for applying the ADOM approach.

3. The Application-based Domain Modeling approach

The Application-based Domain Modeling (ADOM) approach is based on a three
layered architecture: the application layer, the domain layer, and the modeling lan-
guage layer. Influenced by the Meta-Object Facility (MOF) [16], the application
layer, which is equivalent to the MOF model layer (M1), consists of models of par-
ticular applications, including their structure (scheme) and behavior. The language
layer, which is equivalent to the MOF metamodel layer (M2), includes metamodels of
modeling languages. The modeling languages may be graphical, textual, mathemati-
cal, etc. The intermediate domain layer, which can be labeled M1.5, consists of speci-
fications of various domains. The ADOM architecture also enforces constraints
among the different layers. Specifically, the domain layer enforces constraints on the
application layer, while the language layer enforces constraints on both the applica-
tion and domain layers.

Multi
Agent Systems

M1.5: Domain

M1: Application Layer

Figure 1.The Application-based Domain Modeling (ADOM) architecture

Figure 1 depicts the ADOM architecture. The application layer includes three ex-
amples of applications: Amazon, which is a Web-based book store, eBay, which is an
auction site supported by agents, and Kasbah, which is a multi-agent electronic mar-
ketplace. Each one of these systems may have several models in different modeling
languages. The domain layer in Figure 1 includes two domains: Web applications and
multi agent systems, while the language layer in this example includes only one mod-
eling language, OPM.

Figure 1 shows also the relations between the layers. The black arrows indicate
constraint enforcement of the domain models on the application models, while the
grey arrows indicate constraint enforcement of the language metamodels on the ap-
plication and domain models.

In ADOM, domains are treated as regular applications that need to be modeled be-
fore systems in those domains can be specified and designed. Following this princi-
ple, both the domain model and the application models should use the same modeling
technique to avoid incompatible notations and confused models.

4. Object-Process Methodology

Object-Process Methodology (OPM) [5] is an integrated approach to the study and
development of systems in general and information systems in particular. The basic
premise of the holistic OPM paradigm is that objects and processes are two types of
equally important classes of things, which together describe the function, structure,
and behavior of systems in a single, domain-independent model.

OPM unifies the major system lifecycle stages — initiation, development, and de-
ployment — within one frame of reference [8], using a single diagramming tool — a set
of Object-Process Diagrams (OPDs) and a corresponding subset of English, called
Object-Process Language (OPL).

In OPM, system classes, class attributes, physical devices, human users, and envi-
ronmental interfaces, are modeled as object classes. An object class can be either
systemic (internal to the system) or environmental (external to the system). In an
orthogonal manner, a class can be either physical or informatical (logical). An object
class can be at one of several states, which are possible internal status values of the
class objects. At any point in time, each object is at some state, and objects are trans-
formed (generated, consumed, or affected, i.e., their state is changed) through the
occurrence of a process. Unlike the object-oriented approach, behavior in OPM is not
necessarily encapsulated as an operation or method within a particular object class
construct. A process class can involve any number of object classes rather than be an
operation of exactly one object class, as imposed by the object-oriented encapsulation
principle. By allowing for the existence of stand-alone processes, rather than often
having to twist reality to conform to the encapsulation principle, one can model be-
havior that involves several object classes intuitively and in a straightforward manner.
Moreover, OPM enables the modeler to specify that some of the involved objects are
transformed, while others enable the process without being transformed. The modeled
behavior is integrated into the system's structure in a single model that also reflects
the system dynamics in a balanced way. Processes are connected to the involved
object classes through procedural links, which are classified into enabling, transfor-
mation, and event links.

OPM’s built-in refinement/abstraction mechanisms, which are unfolding/folding,
in-zooming/out-zooming, and state expression/suppression, help manage system
complexity by controlling the visibility of details in any OPD and providing for creat-
ing new OPDs. Unfolding/folding is applied by default to objects for exposing/hiding
their structural components (parts, specializations, features, or instances). In-

zooming/out-zooming is applied by default to processes for exposing/hiding their
sub-process components and details of the process execution. A third scaling mecha-
nism—state expression/suppression, enables showing or hiding the states of an object
class.

4. ADOM-OPM

To implement the ADOM approach using OPM, we had to extend it with only two
new features: (1) A role, which is a stereotype-like element emphasizing additional
semantic for an OPM thing. Roles will be used within an application model. (2) A
multiplicity indicator, which constrains the number of OPM things of some class that
can be modeled in an application. The multiplicity indicator will be used within the
domain model.

The rest of this section presents the domain and application layers of ADOM-
OPM. This is done for the example domain of access control (AC) systems, and spe-
cifically for the Drink Vending Machine (DVM) application within the AC systems
domain. Applications in the AC domain are concerned with the problem of accessing
entities, objects and resources using well-defined access policies and procedures [10].
Application areas within the AC domain include all kinds of product vending ma-
chines, automated teller machines (ATM), all kinds of systems that access databases
using batch and interactive interfaces, gambling machines, and local (batch, interac-
tive) and remote access to software and hardware objects in a computer network.

The DVM application manages several machines that belong to various compa-
nies. Each machine is identified by its location and the company that owns it. The
system keeps the name and telephone number of each company. Each machine works
with several coin types. The products sold in each machine are identified by their
name and producer. When a customer buys a drink from the system, he or she first
needs to check whether the product is available and, if needed, whether coins for
change are available. When the customer asks to buy a drink, the system creates a
transaction, updates the relevant information and notifies the machine about the prod-
uct and coins it needs to deliver. A machine operator can perform two operational
activities: drinks filling and coins loading.

4.1. The ADOM-OPM Domain Layer

As noted, the domain in the ADOM approach should be modeled as a regular applica-
tion. OPM is thus the modeling technique for both the domain model and the applica-
tion model, and each will be constructed as an OPM model with its OPD set.

Figure 2, which depicts the system diagram (SD, top level) of the AC domain,
shows that it consists of three external entities—Client, Machine, and Maintenance
Entity, two processes—Operate and Maintain, and four system objects—Owner,
Company, Transaction, and Machine Info. The symbols "m" and "+" at the right-
bottom edge of some OPM things (objects and processes) indicate the multiplicity of
these things within the application model. The symbol "m" indicates zero to many and

the symbol "+" indicates 1 to many. For example, at least one object of type Client
should appear within the application model related to that domain. In addition to
defining OPM things that serve as building blocks in an application in that domain,
links are defined too. For example, the Operate process yields a Transaction. This
constraint should hold in any applications within the AC domain.

Owner Cnmpany+
m
Transaction
Q- _ - _|
:_ ?“_E”_ti_ Clpera_'t-e
Machine Inf o '
achine n|:|+ i Machine+ :

Figure 2. System Diagram of the AC domain

Machine Info is unfolded in Figure 3. Machine Info consists of many Item objects
and many Money Availability objects. ltem exhibits Item Identifier and at least one
Item Attribute and refers to many Transactions and to at least one Owner. Money
Availability exhibits Money Amount and refers to Money Type, which exhibits
Money Value and at least one Identification Sign. Machine Info exhibits at least one
Machine Identifier and an optional Balance. Machine Info refers to a Company and
to many Transactions. Company exhibits Company Identifier. Transaction exhibits
Transaction Date and optionally refers to Owner which exhibits at least one Owner
Details.

Caompany

Company ldentifie

m

)
| Machine Infa
m m

m

Maoney Availa

hility

m
A

1 ltem ldentifier

Maney Type ‘ ‘

| * 1 ltem Attribute

Maoney Amount -
integer

/A\

Transaction

Maoney Value -
integer

* | Owner Details Transazt;tog Date.

Figure 3. Machine Info Unfolded

Cperate

______ ltem Availakility
Checking +

Can Operate e

[t [al
[rue‘] [false]+

Maney & Machine
pdating 4

ltern Updating &
Iachine Operating
+

Figure 4. Operate process in-zoomed

Identification Sign

Money Amount

integer

In Figure 4 the Operate process is elaborated using the in-zooming scaling mecha-
nism of OPM. The order of the processes depicted in that figure is the following:

1.

An optional (as indicated by the multiplicity indicator m) Identification proc-
ess, which requires a Company object, an Owner Object, and a Machine Info
object and yields a Can Operate object;

At least one (as indicated by the + multiplicity indicator) ltem Availability
Checking process, which requires an Item object and yields a Can Operate
object;

At least one Money Availability Checking process, which requires a Money
Amount object and yields a Can Operate object;

A Transaction Creating process, which is activated if the Can Operate object
is true, in which case it yields a Transaction object;

At least one Money & Machine Updating process, which requires the Trans-
action object and affects Balance, Money Amount, and Machine; and

At least one Item Updating & Machine Operating process, which requires
Transaction and affects Iltem Attribute and Machine.

4.3. The ADOM-OPM Application Layer

In ADOM, the application layer uses the domain layer as a validation template. In this
section we provide a specification of the Drink Vending Machine (DVM) application
which is classified by [10] as belonging to the domain of access control systems. The
requirements of the DVM application were presented in the beginning of Section 4.

Tolient ~ T T 7

I~

. Customer |

Transaction

——%= Buy Transaction

Uperate

Drink Buying

Iviaching Info

|
DV | DMl Infio
|

"Maitenance Entity
Ciperator

Figure 5. System diagram of the Drink Vending Machine

Figure 5 presents the system diagram of the DVM application. In the application layer
model, each thing (i.e., an object or a process) is associated with a role. For example,
the object Customer is associated with a Client role, which is an object in the domain
layer model. The Drink Buying process is associated with the Operate role, a process
in the domain layer model.

Note that objects that are classified as Owner and Company, which were specified in

the domain layer model, do not appear in the application layer model since they are

not required at the lower level OPDs of this application. This shows the ability of the

ADOM-OPM approach to capture variability within a domain using the multiplicity

constraints.

The system exhibits three top-level processes:

1. Drink Buying, which is triggered by a Customer, yields a Buy Transaction,
and affects DVM and DVM Info. This process stands for the constraints that were
specified with the Operate role in the domain layer model in Figure 2.

2. Drink Updating, which is triggered by the Operator and affects DVM and DVM
Info.

3. Coin Updating, which is triggered by the Operator and affects DVM and DVM
Info.

Both Drink Updating and Coin Updating conform with the constraints associated

with the Maintain process in the domain level model.

fWeine e | Campany
DM Info Drinks Company

tachine Identifier

Lozation Company Identifier
charfsog Company MName
m m 1 m charfsal
ftem Tobaney Awailability
Ealance i
Amaunt In YD Praduct CainIn /DM
double Company Telephone
/A Hern Tderifier chariog
Froduct ID
integer Whney Amourt_
Mumber Of Coins
integer

Feam Afribute
Prodcut Mame
charfso)

ttern Atribute
Guantity In Stock

integer Thney Type
s - Ve Jrbute Coin
Frodcuer double
Tokney Value
m m C -
: oinValue
TGuner Detais = [Trnsadion N
Producer Mame T .
charlsi] Buy Transaction
Tdertification Sign
_ Coin Radius
TGuner Detais A double

Pl‘udugﬁgﬁgﬂ"ess Transaction Dal
0 Buying Date

Figure 6. DVM Info Unfolded

Wertificatian Sign
Coin Welg?ﬁ
double

Coins Availability
Checking

Transaction

Buying Transaction “

Drink Buying

em Auailability_Chec!(\n
Product Availablity

bney Auailability Checkim

ransaction Creating

Buying Transaction Creation

oney & hachine Updating

Checking

<)
Opel

Can

[twe |
e

rate
Procdcut Available

[fatse]

Balance
Amount In VDM
daouble

Can Operate

(e)

Coins Available

(e |

ttern Atribute
Guantity In Stock
integer

£

v
e

Coin Increasing

O em Updating khachine Operating l

Iboney Availability m
Coinln VDM ——

Tbaney ZAmount X
Mumber Of Coins
integer

o DvM

| L>
CQluatity Setting

Figure 7. Drink Buying process in-zoomed

Figure 6 shows an OPD in which DVM Info is unfolded. This OPD relates to the
OPD in Figure 3 as its validation template. The roles specified within the domain
model are mapped to the application classes of both objects and processes. For exam-
ple, the Producer labeled with the role Owner exhibits Producer Name and Pro-
ducer Address, which are labeled with the role Owner Details. This relation also
demonstrates how the domain layer model serves as a guideline for modeling the
application.

The Drink Buying process, which is in-zoomed in Figure 7, follows the constraints
specified in the domain layer, as described in Figure 4. Overall, the sequence of ap-
plication processes follows the pattern specified in the domain layer model, yet an
Identification process is missing, as it was specified as optional.

6. Evaluating ADOM-OPM

The ADOM-OPM approach has been applied in several domains, including multi-
agent systems, discrete simulation event, resource allocation and tracking, process
control, and databases. We also conducted an experiment to compare ADOM-OPM
with OPM. The goal of the experiment was to determine whether modeling that is
based on a domain model improves the resulting application model compared with an

application model that is developed without the support of a domain model. In this
section, we present the experiment and its results.

6.1 Experiment Hypotheses

Our conjecture prior to carrying out the experiment was that an application model
constructed using ADOM-OPM is more complete and more correct than the model of
the same system resulting from using OPM alone. The reason for this conjecture was
that the domain model in ADOM-OPM provides a framework that guides the modeler
in creating the application model within the domain of discourse.

6.2 Experiment Settings

The subjects of the experiment were 120 third year students in a four-year engineer-
ing B.Sc. program at the Technion — Israel Institute of Technology, who took the
course “Specification and Analysis of Information Systems” at the winter semester of
the 2004-5 academic year. The students had no previous knowledge or experience in
system modeling and specification. During the course, the students studied various
modeling techniques, including Data Flow Diagram (DFD), UML, Statecharts, and
OPM. The last lecture was devoted to the ADOM approach and its application in
UML and OPM.

The experiment took place during the final examination of the course. The exami-
nation consisted of three questions relating to different domains. In each question the
students were provided with application requirements similar to the requirements for
the DVM application in Section 4. We had three different examination versions, such
that in each question (domain) about half of the students were also provided with the
OPM-based domain layer model.

The students were divided arbitrarily into three groups, labeled V1, V2, and V3,
and each group responded to a different examination version. Each version included
one question with a domain model and one question without a domain model. The
distribution of students into the three groups and the three domains (questions) is
given in Table 1, where the numbers of students who responded to each question in
each version appear in parenthesis.

Table 1. Students' distribution by exam version and domain (question)

. Exam Version V1 V2 V3
Domain
Resource Allocation and
Tracking (RAT) OPM (32) ADOM-OPM (40)
Process Control (PC) ADOM-OPM (38) OPM (28)
Access Control (AC) ADOM-OPM (41) OPM (32)

6.3 Experiment Results

All the questions were graded by the course staff, two teaching assistants and the first
author of this paper. Each one of the graders checked a question in one domain for all
students according to a pre-defined set of criteria. Each question could score up to 34
points. Table 2 summarizes the average scores students achieved for each question in
OPM and in ADOM-OPM.

Table 2. OPM vs. ADOM-OPM scores

Domain RAT PC AC Total
Method
OPM 23.06 27.07 25.06 25.6
ADOM-OPM 25.00 30.64 28.19 27.55
Significance p<0.05 p<0.01 P<0.02 p<0.01

Table 2 clearly shows that using the ADOM-OPM the students achieved better results
than with OPM alone, and these results are domain independent. Performing a mean
comparison statistical analysis we found that the differences between the two meth-
ods were significant. This confirms our conjecture regarding the benefits of modeling
with ADOM-OPM compared with generic OPM modeling. Examining the results in
detail we found out that the models done using ADOM-OPM scored better than mod-
els done with OPM alone in terms of correctness of objects, processes, and links and
in terms of model completeness.

6. Summary

We have extended Object-Process Methodology (OPM) to handle application domain
modeling (ADOM) approach. The OPM extension includes roles, which are stereo-
types-like elements, and multiplicity indicators. We demonstrated the use of the re-
sulting ADOM-OPM approach by applying it to the domain of access control systems
and a corresponding application—the drink vending machine. Finally, we examined
the ADOM-OPM approach via a controlled experiment and established that it helps
create better models than those obtained using OPM alone.

The ADOM-OPM approach features the following advantages:

1. The multiple view problem: OPM supports system specification in a single, uni-
fying view, or diagram type. Since a domain is modeled just like an application
within a domain, domain modeling benefits from all the advantages of OPM, in-
cluding its single view, the combination of formality with intuition, and the bi-
modal graphic-textual representation (not discussed in this paper).

2. Relationships between the domain and application models: The ADOM-OPM
approach utilizes the domain model while modeling the application in the follow-
ing ways: (1) labeling of the application model entities with roles defined in the
domain model; and (2) validating the relationships among the application model

elements (entities and links) according to the thing roles and link constraints de-
fined in the domain model.

3. The models incompatibility problem: both the domain and the application OPM
models use the same notations and semantics, so no mental model transformation
is needed.

Moving forward from domain analysis, domain design in OPM is similar to do-
main analysis, as it employs the same terminology while deepening the level of de-
tails and shifting the focus from the problem domain to the solution domain. The
transformation to domain implementation can be done using the Generic Code Gen-
erator (GCG) [22] associated with OPCAT [9]. Utilizing the GCG and roles within a
domain can be a basis for developing infrastructure components and using them to
generate applications.

The implementation of the ADOM-OPM analysis approach is currently being inte-
grated into OPCAT. We plan to extend the application model so that it can be based
on more than one domain model. We also intend to experimentally compare the
ADOM-OPM approach with ADOM-UML approach.

Acknowledgement

The authors wish to thank Dr. Iris Reinhartz-Berger for her insightful remarks and
comments and for her help in designing the experiment.

References

1. Carnegie Mellon - Software Engineering Institute, “Domain Engineering: A Model-
Based Approach”, http://www.sei.cmu.edu/domain-engineering/, 2002.

2. de Champeaux D., Lea D., and Faure P., Object-Oriented System Development, Addi-
son Wesley, 1993.

3. Cleaveland C., “Domain Engineering”, http://craigc.com/cs/de.html, 2002.

4. Davis J., “Model Integrated Computing: A Framework for Creating Domain Specific
Design Environments”, The Sixth World Multiconference on Systems, Cybernetics,
and Informatics (SCI), 2002.

5. Dori D., Object-Process Methodology - A Holistic Systems Paradigm, Springer Verlag,
2002.

6. Dori D., “Representing Pattern Recognition-Embedded Systems through Object-
Process Diagrams: the Case of Machine Drawing Understanding System”, Pattern Rec-
ognition Letters, 16(4), pp. 374-384, 1995.

7. Dori D., “Object-Process Analysis of Computer Integrated Manufacturing Documenta-
tion and Inspection”, International Journal of Computer Integrated Manufacturing,
9(5), pp. 339-353, 1996.

8. Dori D. and Reinhartz-Berger 1., “An OPM-Based Metamodel of System Development
Process”, Proceedings of Twenty Second International Conference on Conceptual
Modeling (ER), 2003.

10.

11.

12.

13.

14.

15.

16.
17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Dori D., Reinhartz-Beger 1., and Sturm A., “OPCAT — A Bimodal CASE Tool for
Object-Process Based System Development”, The fifth International Conference On
Enterprise Information Systems (ICEIS), 2003.

Dufty, D. J., “Domain Architectures: Models and Architectures for UML Applica-
tions”, John Wiley & Sons, 2004.

Gomaa E. and Kerschberg L., “Domain Modeling for Software Reuse and Evolution”,
Proceedings of Computer Assisted Software Engineering Workshop (CASE 95), 1995.
Kang K., Cohen S., Hess J, Novak W. and Peterson A,
“Feature-Oriented Domain Analysis (FODA) Feasibility Study”, CMU/SEI-90-TR-021
ADA235785, 1990.

Meekel J., Horton T. B., France R. B., Mellone C., and Dalvi S., “From domain models
to architecture frameworks”, Proceedings of the 1997 symposium on Software reus-
ability, p.75-80, 1997.

Morisio M., Travassos G. H., and Stark M., “Extending UML to Support Domain
Analysis”, Proceedings of the Fifth IEEE International Conference on Automated
Software Engineering, pp. 321-324, 2000.

Nordstrom G., Sztipanovits J., Karsai G., and Ledeczi A., “Metamodeling - Rapid
Design and Evolution of Domain-Specific Modeling Environments”, Proceedings of
the IEEE Sixth Symposium on Engineering Computer-Based Systems (ECBS), pp. 68-
74, 1999.

OMG -MOF, “Meta-Object Facility (MOF™)”, version 1.4, 2002.

OMG-UML, “The Unified Modeling Language (UML™)”, version 1.5, 2003.

Peleg M. and Dori D., “The Model Multiplicity Problem: Experimenting with Real-
Time Specification Methods”, IEEE Transaction on Software Engineering, 26 (8), pp.
742-759, 2000.

Petro J. J., Peterson A. S., and Ruby W. F., “In-Transit Visibility Modernization Do-
main Modeling Report Comprehensive Approach to Reusable Defense Software”
(STARS-VC-H002a/001/00). Fairmont, WV: Comprehensive Approach to Reusable
Defense Software, 1995.

Reinhartz-Berger 1., Katz S., and Dori D., “OPM/Web - Object-Process Methodology
for Developing Web Applications”, Annals on Software Engineering - Special Issue on
OO Web-based Software Engineering, pp. 141-161, 2002.

Reinhartz-Berger 1. and Dori D., “OPM vs. UML — Experimenting Comprehension and
Construction of Web Application Models”, Empirical Software Engineering Journal,
10 (1), pp. 57-80, 2005.

Reinhartz-Berger 1. and Dori D., “Object-Process Methodology (OPM) vs. UML: A
Code Generation Perspective”, EMMSAD, 2004.

Reinhartz-Berger 1. and Sturm A., “Behavioral Domain Analysis — The Application-
based Domain Modeling Approach”, the 7th International Conference on the Unified
Modeling Language (UML'2004), LNCS 3273, pp. 410-424, 2004.

Rumbaugh J., Blaha M., Premerlani W., Eddy F., and Lorensen W., “Object-Oriented
Modeling and Design”, Prentice-Hall International Inc., 1991

Schleicher A. and Westfechtel B., “Beyond Stereotyping: Metamodeling Approaches
for the UML”, Proceedings of the Thirty Fourth Annual Hawaii International Confer-
ence on System Sciences, pp. 1243-1252, 2001.

Siau K. and Cao Q., “Unified Modeling Language: A Complexity Analysis”, Journal of
Database Management, 12 (1), pp. 26-34, 2001.

Sturm A. and Reinhartz-Berger 1., “Applying the Application-based Domain Modeling
Approach to UML Structural Views”, the 23" International Conference on Conceptual
Modeling (ER'2004), LNCS 3288, pp. 766-779, 2004.

28. Terrasse M. and Savonnet M., “Formalization of the UML Metamodel: An Approach
Based Upon the Four-Layer Metamodeling Architecture”, Proceedings of the Four-
teenth ECOOP Workshop on Defining a Precise Semantics for UML, 2000.

29. Valerio A., Succi Giancarlo, and Fenaroli Massimo, “Domain analysis and framework-
based software development”, ACM SIGAPP Applied Computing Review, 5 (2), 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B903C703B503B903C103B703BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002C0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020064506440627062606450629002006440644063906310636002006480627064406370628062706390629002006270644064506460627063306280629002006440648062B062706260642002006270644063906450644002E00200645064600200627064406450645064306460020062306460020064A062A064500200641062A062D00200648062B06270626064200200050004400460020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000760068006F0064006E00FD00630068002000700072006F002000730070006F006C00650068006C0069007600E90020007A006F006200720061007A006F007600E1006E00ED002000610020007400690073006B0020006F006200630068006F0064006E00ED0063006800200064006F006B0075006D0065006E0074016F002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006800690076006100740061006C006F007300200064006F006B0075006D0065006E00740075006D006F006B0020006D00650067006200ED007A00680061007400F30020006D0065006700740065006B0069006E007400E9007300E900720065002000E900730020006E0079006F006D00740061007400E1007300E10072006100200061006C006B0061006C006D00610073002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A0061007000650077006E00690061006A010500630079006300680020006E00690065007A00610077006F0064006E0065002000770079015B0077006900650074006C0061006E00690065002000690020006400720075006B006F00770061006E0069006500200064006F006B0075006D0065006E007400F300770020006600690072006D006F0077007900630068002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E0432002C0020043E043104350441043F04350447043804320430044E04490438044500200433043004400430043D044204380440043E04320430043D043D044B04390020043F0440043E0441043C043E04420440002004380020043F0435044704300442044C002004340435043B043E0432044B044500200434043E043A0443043C0435043D0442043E0432002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF005400690063006100720069002000620065006C00670065006C006500720069006E0020006700FC00760065006E0069006C0069007200200062006900720020015F0065006B0069006C006400650020006700F6007200FC006E007400FC006C0065006E006D006500730069002000760065002000790061007A0064013100720131006C006D006100730131006E006100200075007900670075006E0020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB <FEFF05d405e905ea05de05e9002005d105e705d105d905e205d505ea002005d405d005dc05d4002005db05d305d9002005dc05d905e605d505e8002005de05e105de05db05d90020005000440046002005d405de05ea05d005d905de05d905dd002005dc05ea05e605d505d205d4002005e205dc002005d405de05e105da002005d505dc05d405d305e405e105ea002005de05e105de05db05d905dd002005de05e905e805d305d905d905dd002e002005e005d905ea05df002005dc05e405ea05d505d7002005d005ea002005de05e105de05db05d9002005d4002d005000440046002005e205dd0020004100630072006f006200610074002005d5002d005200650061006400650072002005d205e805e105d005d505ea00200035002e0030002005d505de05e205dc05d4002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

