

® 2016 The Authors.

2016 Conference on Systems Engineering Research

Engaging ontologies to break MBSE tools boundaries through

semantic mediation

Uri Shani
a
, Shmuela Jacobs

b
, Niva Wengrowicz

b
, Dov Dori

c *

aIBM Haifa Research Lab, Haifa University, Haifa, Israel
bFaculty of Industrial Engineering and Management, Technion – Israel Institute of Technology, Haifa, Israel

cEngineering Systems Division, Massachusetts Institute of Technology,Cambridge MA, USA

Abstract

We introduce ontologies (as in the Semantic Web ontology language OWL) to serve as formal description of the modeling

languages of model-based systems engineering (MBSE) tools. In these tools, systems are designed via abstractions, each tool

with its own conceptual modeling languages having different syntaxes and different semantics. This creates barriers in sharing

these mathematical models among the tools. Our journey starts with the web, where large amounts of information from any

sources on the Web can be linked and combined in many ways. The Semantic Web added meaning through OWL ontologies to

the information in web pages so machines could better process information to enhance users’ experience.

The field of MBSE offers a great many different tools to the engineer, each representing the system under design or a view of

that system albeit mathematically, but differently so that sharing a model from one tool with another is impossible, or darn

difficult and error prone.

This problem is often classified as “tools interoperability”, but it is primarily a language interoperability problem. The Open

Services for Lifecycle Collaboration (OSLC) specifications and initiative brought the Semantic Web technologies into MBSE by

introducing Resource Description Framework (RDF) for common model representation, RESTful protocols, as a common

communication and data exchange method, and enabling the linking of model elements in the different tools that are used for

product lifecycle management (PLM)..

The semantic mediation container (SMC) is a platform developed by IBM Research as part of EU projects (SPRINT, DANSE

and now PSYMBIOSYS) to support the mediation of models represented in RDF and exchanged over the Internet using RESTful

API. SMC extends the benefits of the OSLC approach by adding semantics using the Web Ontology Language (OWL)

specifications to define language ontologies. Each tool exchange models with the SMC platform, where models are constructed

according to specific ontologies (in OWL) per each of the tools. Models can than be mediated to comply with different

ontologies. The rules governing the mediation are also coded as OWL ontologies that bridge two different ontologies and are

interpreted by a mediator. Bridging is a form of transformation, or an inference over the statements of the 3 involved ontologies,

and those of the input RDF model, all driven by a mediation engine we term mediator. In this paper we introduce the first stages

of mediation as applied to two different modeling tools; Rhapsody that implements the OMG standard SysML specification, and

OPCAT – the OPM CASE tool implementing the Object-Model Methodology (OPM) which is an emerging ISO 19450 standard.

Keywords: MBSE; Semantic Web; ontologies; mediation; tools interoperability; OPM; SysML;

1 Corresponding author. Tel.: +972-4-8296282; fax: +972-4-8296-116. E-mail address: shani@il.ibm.com

 Uri Shani, Shmuela Jacobs, Niva Wengrowiz, Dov Dori 2

1. Introduction

As requirements from systems grow and technology advances, the systems we create become larger and more

intricate. Whether it is software, a machine, or a combination of them, there are many aspects in different domains to

be considered throughout the lifecycle of a system. Since systems engineering, addresses a large mix of domains in a

single system or system-of-systems, it is difficult [1], if not impossible, to agree on a common, shared language.

Specialized domains have established exchange potential among tools, e.g., the mechanical STEP (ISO 10303) [2]

standard and the electronic EDIF (IEC 61690-1) [3].

Design, development, and manufacturing of many complex systems employs best of breed tools that span across

different dimensions, including requirements, architecture, physical modeling (e.g., electrical and mechanical),

software development, control systems design, various analytic tools (e.g. simulation, verification, etc.), and project

management tools, which contain information about schedules, tasks, and costs. Moreover, vast amounts of

experimental, product, and operational data exist and are often utilized during design process. Being able to leverage

the knowledge of relationships, whether logical or mathematical, between all or some of the aforementioned

information can bring great value to the system development process, reducing costs and risks, improving designs,

and shortening schedules.

The Semantic Web is a relatively new approach for sharing data across the internet. It is managed and developed

by the World Wide Web Consortium (W3C), which presents specifications and technologies that may be used for

easier and more efficient collaboration between teams using different software tools. Among these specifications are

Resource Description Framework (RDF) for data representation, Linked Data for specifying relations among

resources, and Web Ontology Language (OWL) for ontologies definition. A most successful effort in applying

Semantic Web principles into systems engineering is the Open Services for Lifecycle Collaboration (OSLC)

initiative [4]. OSLC workgroups specify a common vocabulary that provides for interoperability between tools

within and across different domains. A model may be instantiated to an existing, working system, the components

and resources of which are uniquely identified by URIs and may be accessed by applications that use

Representational State Transfer (RESTful [5]) protocol.

The idea of Linked Data [6,7] as applied in OSLC is depicted in Figure 1. Each tool holds information relevant to

its domain, and Internet URLs (the black arrows) reference related addressable resources in other tools. For example,

a requirement may address a test-case to test it, or correlating component architecture in a design diagram. OSLC

requires MBSE tools to operate as web servers rather than traditional isolated tools, managing models. Model

contents are exchanged with other tools and users via web service requests. However, most modeling tools are not

working in this way, but are (thick) client tools, and they are not responsive web services.

 The Semantic Mediation Container (SMC) is a

container of services, originally built as a Jazz® [8]

application, a platform which implements OSLC

specifications with integrated tools. Presently, it is

generalized to work with any web container and cloud

platforms such as the IBM Bluemix®. In fact, SMC

holds models of various domains of a system in RDF

format, communicates them to and from client tools

using RESTful protocols, and performs mediation among

models, which is an key capability of SMC compared

with “plain” OSLC providers of RDF models. Client

tools can post (export) models serialized from their

internal representation to RDF graph structure, and get

(import) RDF models and merge them back with their

internal structure. Once on the SMC server, RDF model

resources (i.e., elements) can be accessed using the usual

OSLC protocol. The mediation process is discussed in

the following section. SMC has been developed in the

SPRINT [9] and DANSE [10] EU FP7 projects for the

Figure 1. Linking resources in different tools to create the OSLC tools

interoperability.

 Uri Shani, Shmuela Jacobs, Niva Wengrowiz, Dov Dori 3

Nomenclature

OPCAT OPM Case Tool

OPD Object-Process Diagram

OPM Object Process Methodology

OSLC Open Services for Lifecycle Collaboration

OWL Web Ontology Language

RDF Resource Description Framework

REST Representational State Transfer

SMC Semantic Mediation Container

UPDM Unified Profile for DODAF and MODAF

URI Universal Resource Identifier

URL Universal Resource Locator

W3C World Wide Web Consortium

collaborative design in complex systems engineering and for the design of systems of systems, respectively.

In this paper we introduce quite a few synonyms that are collected into the Nomenclature box shown here for one

place to seek them all.

In the SPRINT project, three tools have been used

to demonstrate a collaborative model development

through multiple tools, each with its own specialty and

purpose: Rhapsody® [11] for design using

SysML[12], Wolfram SystemModeler® [13] for

modeling and simulation using Modelica [14], and an

in-house analysis tool called “DESYRE®“. SPRINT

use cases were also applied in the DANSE project with

additional tools, increasing interoperability and

adaptation to system of systems methodologies and

standards like the UPDM [15] modeling framework,

which has been used thorough the Rhapsody tool. The

ontology for the Rhapsody tool has been developed

with two purposes in mind: (1) allowing the mediation

of models to the other tools in the project by including

all the important concepts that are needed by the engineers, and (2) maintaining the RDF models human readable for

manual verification of the mediation.

Object-Process Methodology (OPM) [16] has been the subject of research [17, 18] comparing it to SysML and

investigating synergy between them [19], and applying it in a variety of system modeling domains, ranging from

Executable Simulation Environment [20] through Project-Product Lifecycle Management [21, 22], risk modeling

[23], systems engineering education [24], and conceptual model-based system biology [25].

As part of the research, OPM models are translated to SysML and vice-versa. The use of the semantic mediation

approach to share OPM models with SysML tools such as Rhapsody allows easier implementation of the translation

process, since Rhapsody is already integrated in SMC and is being evolved by its own development team. Hence, the

following steps were needed to add OPM to SMC and allow translation to SysML: 1. Develop export module from

OPM Case Tool (OPCAT
†
, [26]) to RDF data structure, 2. Develop import module for RDF files into visual

representation in OPCAT, and, 3. Define rules for mediation between OPM to SysML models. All three steps

require the OPM ontology defined using OWL. Completion of this work shall result in more than merely the ability

to mediate OPM and SysML models. Using existing transformations between SysML to other languages, model data

and concepts may be shared between OPCAT and a large variety of modeling tools. Furthermore, having the ability

to represent OPM models in RDF format is the first step for integrating OPM into the Semantic Web.

The rest of this paper comprises four sections: The SMC platform and the semantic mediation concept, the

Rhapsody ontology development, the OPM ontology development, and Summary and future research.

2. Semantic Mediation Container

OSLC is concerned with linked data so that model elements in one tool can maintain links to elements in other

models, regardless of the tool and language or semantics of the tools. Having a link to an element, OSLC supports

the access to the element description as a resource with properties, structured as an RDF graph. To further browse a

link over the Internet, the resource owner is designed as a Web server, which can also respond with structural

information about the “shape” of the model graph in which the resource is located, and even the visual image

diagram and icons of that resource. All these facilities make it possible for an engineer user to browse models owned

by any OSLC compliant server. However, for machines to formally process the linked data, the semantics of the

linked resources are needed. That is where ontologies play an important role. The ontologies are specified in OWL

and are also represented as RDF graphs.

The semantic mediation container (SMC) assumes that all RDF model graphs are associated with an ontology

that provides the semantics of the graph elements and thus enables mediating between a model with a certain

† OPCAT is available freely from http://esml.iem.technion.ac.il/

http://esml.iem.technion.ac.il/

 Uri Shani, Shmuela Jacobs, Niva Wengrowiz, Dov Dori 4

Figure 2. Turtle syntax (left) of a simple model RDF

graph, and the diagram (right) of that graph.

ontology and a model with a different ontology. In other words, the SMC transforms a model in one modeling

language to a model in another. To better understand our terminology, in what follows we present simple example of

two models, each expressed in its own ontology, which are mediated using simple mediation rules.

2.1. RDF model example

Figure 2 is of an RDF model, represented graphically on the right and textually on the left, using the RDF Turtle

syntax [27]. The top @prefix lines define namespaces, so their prefix string can be used to shorthand the full name-

space. The uml prefix is for the namespace of the ontology describing the language of this model (see subsection

2.2). base is the prefix for the namespace of the model elements. The bold face URLs are resources in this model,

represented as nodes in the RDF graph. Each resource is followed by properties, called “predicates” in the RDF

terminology, which are edges to other nodes in the graph. Some nodes are literals, some are resources in the same

model graph, and some are nodes in other graphs, such as ontologies. The elements with the prefixes uml, rdf, and

rdfs are resources in other models of ontologies. The RDF and RDFS ontologies provide the basic building blocks of

RDF graphs, and the UML ontology is a new ontology, as described in the next subsection.

The four resources in this graph (…0002, …0003. …0004, and …0005) are “instances” of the two ontological

concepts uml:Type and uml:Object.

@prefix base:

<https://sprint.haifa.il.ibm.com:9444/dm/sm/repository/uml/resource/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix uml: <http://tutorial.uml/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

base:0002 a uml:Type ;

rdfs:description "Class A" ;

rdfs:title "A" ;

uml:hasObject base:0003 .

base:0005 a uml:Type ;

rdfs:description "Class B" ;

rdfs:title "B" ;

uml:hasObject base:0004 .

base:0004 a uml:Object ;

rdfs:description "An instance of class A" ;

rdfs:title "aA" ;

uml:hasType base:0002.

base:0003 a uml:Object ;

rdfs:title "aB" ;

uml:hasType base:0005.

@prefix uml: <http://tutorial.uml/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

uml: a owl:Ontology .

uml:hasObject a owl:ObjectProperty ; rdfs:domain uml:Type ;

 rdfs:range uml:Object .

rdfs:label rdfs:domain uml:TopUML .

rdfs:comment rdfs:domain uml:TopUML .

uml:hasType

 a owl:ObjectProperty ;

 rdfs:domain uml:Object ;

 rdfs:range uml:Type .

uml:TopUML a owl:Class .

uml:Object a owl:Class ; rdfs:subClassOf uml:TopUML .

uml:Type a owl:Class ; rdfs:subClassOf uml:TopUML .

Figure 3. Ontology RDF graph on left, and a diagram of that graph on the right for the ontology "UML" used to define the model in Fig. 2.

 Uri Shani, Shmuela Jacobs, Niva Wengrowiz, Dov Dori 5

2.2. Ontology

For the model of Figure 2, discussed above, we introduce in Figure 3 its ontology, which is an RDF graph as

well. The graph defines resources which are concepts of this ontology. These are used to define the resources of the

instance graph in Figure 2. The types of these resources are concepts of the OWL ontology, hence OWL is the meta-

model of the various ontologies.

The ontology is an RDF graph as well. The prefix uml
‡
 represents the namespace of the ontology http://tutorial.uml.

It is a resource of type owl:Ontology. The concepts rdfs:label and rdfs:comment are defined in the rdfs standard

taxonomy, but here they are also refined as having a relation rdfs:domain with a resource concept of this new

ontology. The main concepts are the resources uml:Type and uml:Object which are OWL classes having type

owl:Class. The main predicate concepts are uml:hasType, and uml:hasObject, which are OWL properties, as

expressed by their type owl:objectProperty. Other relations and resources in this ontology are used to assign the

rdfs:title as the name of an entity and rdfs:comment as its textual description (see Figure 2).

2.3. Mediation rules

The mediation bridges over two ontologies. For the purpose of this example, we create a second ontology, SML

(having namespace http://tutorial.sml/) for which we define a prefix sml:), which defines the concepts sml:Block,

sml:Part, sml:hasPart, and sml:hasBlock. This ontology is similar to the “UML” one, as it looks like a mere

renaming of concepts, which serves well this introduction. Therefore, it is simple to mediate between the two. The

mediation rules are defined as a bridging ontology, presented in Figure 4.

When applied to the UML instance model in Figure 2, it is mediated to the model on the right hand side of Figure

4 by redefining the resources, reclassifying them with the corresponding classes of the SML ontology, and

converting the relation properties to the corresponding relations in that SML ontology.

‡ This uml term should not be confused with the UML standard, although the concepts here have similar meaning to

corresponding concepts in UML.

Figure 4. The rules ontology (left) in Turtle format, and the resulting model instance of the AML ontology, mediated from the UML

ontology model instance on the right.

@prefix rules: <http://tutorial.sml.uml/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

<http://tutorial.sml/hasBlock>

 owl:equivalentProperty

 <http://tutorial.uml/hasType> .

<http://tutorial.sml/Block>

 owl:equivalentClass <http://tutorial.uml/Type> .

<http://tutorial.sml/hasPart>

 owl:equivalentProperty

 <http://tutorial.uml/hasObject> .

<http://tutorial.sml/Part>

 owl:equivalentClass <http://tutorial.uml/Object> .

rules:

 a owl:Ontology ;

 owl:imports <http://tutorial.sml/> , <http://tutorial.uml/> ;

 owl:versionIRI <http://tutorial.sml.uml/v1.0> .

http://tutorial.uml/
http://tutorial.sml/

 Uri Shani, Shmuela Jacobs, Niva Wengrowiz, Dov Dori 6

2.4. The SMC platform

To facilitate mediations, a

configurable platform has been developed

to serve the SPRINT and the DANSE

projects based on the IBM Jazz platform

[8]. SMC allows the user to create RDF

ontologies, import them from various

sources on the Internet, and alter them

using the Protégé [28] ontology editor.

Rule ontologies, also editable with

Protégé, are distinguished entities of

SMC: they are associated with a pair of

ontologies. A web interface allows the

administrator to plan mediation links

among repositories holding RDF datasets

of model instances. Each repository is

associated with its own ontology and is

expected to comply with it. Tools such as

Rhapsody, and SystemModeler can export

and import their model projects to and from

the SMC. Once that happens, SMC triggers mediation steps, which create for each input model a corresponding

output model, like the AML and UML model instances in the example above. The mediation is carried out by an

implementation of a mediator. The mediator is an interpreter of the mediation rules ontology. When configuring a

mediation link between two ontologies, that link must be associated with both the rules ontology and the mediator

that will execute it. Different mediators have been developed on the SMC, some by IBM, some by other vendors.

A simplified diagram of a mediation “network” as demonstrated in the SPRINT project [29-33] is depicted in

Figure 5, in which the mediations are drawn as arrows, labeled in yellow and red circled numbers according to a

scenario in which an original SysML model in Rhapsody is exported (1) to the first RhP repository as an RDF

model. The RhP repository is mediated (2) to an intermediate repository, BSO, whose ontology represents the

common structural concepts of the three ontologies for the three tools in this scenario. In the following mediations,

(3) and (4), this intermediate model is mediated in parallel to Desyre and to the Modelica tool SystemModeler, in

which the model is expressed in the Modelica language.

The RDF model is also imported (5) to the tool. The

SystemModeler engineer now adds new components to the

model and exports it back to the SMC, following again the

mediation steps in the reverse direction (labeled in red).

Finally, the modified model, including the additions and

modifications made by the SystemModeler engineer, is

imported into Rhapsody.

3. Developing the Rhapsody Ontology

The tools, intermediate ontologies, and rule ontologies

that were developed in SPRINT are published as

appendices in the SPRINT final report [30]. The purpose of

this section is to convey the rationale behind the

construction of the Rhapsody ontology. The ontology is

intended not as a formal description of the modeling

language implemented in that tool, but mainly to serve

semantic mediation of models from that tool to models in

Figure 6. The Rhapsody model browsing view, with the "explorer"

on the left side panel showing the hierarchical structure of the

model.

Figure 5. The mediation flow demonstrated in the SPRINT project.

 Uri Shani, Shmuela Jacobs, Niva Wengrowiz, Dov Dori 7

other ontologies.

When facing this challenge, there are several forces that can pull the results in different directions:

1. Being a SysML tool, adopting a SysML OWL ontology seems like a good idea. However, there is no

such specification, but being a formal standard of OMG, the SysML ontology is formally defined using

eCore (an OMG MOF standard) [34]. It is possible to convert the eCore meta-model to OWL. The

developer of the export/import code must figure out how to implement these services using the tool’s

internal data access facilities.

2. One can consider as most critical the technical difficulty of extracting a model from the tool to RDF and

the ability to merge the RDF back to an existing model (or the simpler case of recreating a model in the

tool from an RDF model). In this case, it may be tempting to simply create an ontology which reflects

on the internal tool data structure. For instance, many elements in the Rhapsody internal data structure

are variants of a basic building block, through some properties. Hence, it would be simpler to reflect that

basic building block in the ontology and define the different properties which assign that element the

different SysML roles in the model.

3. One can build the resulting ontology by using the domain concepts explicitly, in our case SysML. That

may look similar to the first force listed above, and it may really be that, in case an ontology for SysML

is indeed written as an OWL model. Yet, a SysML ontology may not be exactly what Rhapsody

implements, or for that matter any other tool that may claim to be a SysML compliant tool. Hence, it

would be better to first worry about our tool and the “language” it interprets, rather than whether it is the

standard SysML or its own “standard”.

Experience with the first approach above has shown us that the resulting ontology is rather complex and rich with

information that is overwhelming. That is all depending on the details of the eCore metamodel. In SPRINT, the

SystemModeler OWL ontology has been created from an eCore model, published as appendices of the final project

report [30]. Yet, the eCore model here has been designed with the third criterion above in mind, and was lean to

produce also a leaner OWL ontology.

The ontology needs to be lean so it can be used for mediation, not for validation of the resulting RDF models.

Hence, the OWL capabilities to define restrictions are not required and are not expected to be used as part of the

mediation interpretation of the rules. The ontology should convey the structure of the models using just some of the

OWL concepts, including objectProperty, dataProperty, domain, range, and sub-relations (among classes, and

among properties).

Another example is an ontology that followed the second criterion, which was easy to develop and generate RDF

from. This is a “dump” or “serialization” of the internal model data structure, making it easy to extract and embed

back into the tool. Yet, mediating this to other models of other tools would be difficult, and an engineer who is used

to the tool’s GUI and the tool’s explorer view of the model (see Fig. 6) that RDF will be hard to follow and

understand.

Hence, the approach we took has been to reflect all the concepts that the engineer is faced with when using the

tool, reflecting the tool’s “language”. Looking at the explorer of Rhapsody for a certain model, the concepts include

things such as “Block”, “Part”, “Port”, “Connector”, “Attribute”, “Type”, “Stereotype”, and so on. The Rhapsody

ontology defines all these concepts as OWL classes. Next, the relations among elements of these types may be of

ownership to facilitate the tree structure of the model, as shown in the explorer hierarchical tree view. Yet, there are

also other references among the entities. For instance, a “Part” references a “Block”, which is its “type”. Contrary to

that, when a “Block” contains “Parts”, that relation is an ownership relation. Still, both relations will look the same

in the ontology, as they are represented as owl:ObjectProperty.

The next section describes the OPM ontology development. The Rhapsody tool can also model behavior of

“Blocks”, much like the “Process” aspect of the OPM models, yet the Rhapsody behavior is defined through state-

charts state machines showing the reaction of the block producing output signals depending on its state and input

signals. That behavior aspect will be coded as “contracts” (not describe in this paper) for the Desyre tool, and

analytic equations in Modelica. All these tools can produce simulation objects which can be used in system

evaluation and testing, and which are written in the standard FMI (Functional Mockup Interface) [35]. The SMC

approach to that has been therefore to ignore the internal formal behavior description, be it contracts, equations, or

 Uri Shani, Shmuela Jacobs, Niva Wengrowiz, Dov Dori 8

Figure 7. Three options for representing OPM links in RDF

state-charts, and associate (with a link) the RDF resource representing a Block (in the Rhapsody case) with the FMI

binary object which is kind of a “blob” that FMI tools can work with.

4. Developing the OPM ontology

OPM is a holistic methodology for modeling complex systems of all kinds. Consisting of a minimal ontology of

stateful objects and processes that transform them, with simple syntax and well-defined semantics, OPM enables

representing the system’s function, structure, and behavior in a set of hierarchically organized diagrams of the same

and only type—Object-Process Diagram (OPD). Each OPM element (thing, i.e., object or process, or link) has

precise semantics, allowing validation of a model using restrictions enforced by the OPM modeling tool OPCAT

[24] while building and executing the model. OPCAT provides a simulation module as well as textual representation

in Object-Process Language (OPL).

For defining OPM ontology in OWL, considerations similar to those of the Rhapsody ontology construction were

taken. First, the scope of the ontology was determined. Then, the data preservation level was decided. Finally,

different approaches of elements representation in RDF were considered. The work aimed not only to fulfill the

requirements of SMC, but also to start integration of OPM into the Semantic Web. Therefore, our objectives were

established to preserving maximum knowledge while allowing efficient data retrieval. Whenever a narrower

representation is needed, information may be inferred from the complete model. The completeness of the ontology

has been examined by round-trip transformation of OPM model from OPCAT to RDF and back, using the ontology-

based export and import modules [15, 16].

The scope of the ontology was determined to represent all the semantically meaningful information and only that

information. OPM models consist of entities—things and links. Things are objects and processes, which have

relations among them expressed as structural and procedural links. In the graphical representation in object-process

diagrams (OPDs), some visual layouts also express semantics. For example, the relative vertical positioning of

subprocesses in the context of an in-zoomed process determines their order of execution, from top to bottom. Hence,

while in general visual attributes such as positional coordinates and size of elements were kept out of the ontology,

meaningful visual relations, such

as vertical position, were

included. For example, the

property “is before” describes the

relation between two

subprocesses, where the earlier

subprocess is positioned above the

later one.

The entire OPM model is

expressed through a hierarchical

set of OPDs. The tree hierarchy is

generated by process in-zooming:

Each new-diagram in-zooming

operation creates a child OPD. All

the OPDs are self-similar, in that

all OPDs, regardless of their depth

level, use the compact ontology of

stateful objects and processes that

transform them, as expressed by

the various links. The hierarchy

helps cope with the human limited

channel capacity [36], but in

principle, even the most complex OPM model can be expressed in a single, flat diagram. Two models with different

hierarchical structure may be semantically identical, since the processes in the single flat diagram can be grouped in

many ways. Therefore, the hierarchical structure of the OPM model is not included in the ontology.

 Uri Shani, Shmuela Jacobs, Niva Wengrowiz, Dov Dori 9

The level of data preservation within the scope corresponds with the OPM specifications in the OPM 19450 ISO

standard – publically available specification [37]. Some elements from the specifications were not implemented in

the ontology because they cannot be realized and tested in OPCAT yet. OPCAT has capabilities that are not

mentioned in the OPM standard, for instance special properties of elements, which were not included in the

ontology. However, new elements may be easily added to the ontology without affecting the existing definitions.

Some OPM element representations in OWL is straightforward and intuitive. For example, objects and processes are

clearly resources with properties. Links, however, may have different definition options. Several methods were

examined, from representing links as properties of objects and processes, through using blank nodes for compound

statements, to creating a resource for each link instance. Some of the options considered are illustrated in Figure 7.

Representing each link as a resource enables better preservation of data which describes the link itself, e.g.,

cardinality and tags. Inheritance of resource types and properties is used in the OPM ontology. opm:Process and

opm:Object inherit from opm:OPMThing, and all the links inherit from opm:Link.

5. Summary

The promise of semantic mediation in model-based system engineering is that the content of models in different

modeling languages, built using different modeling tools, can be shared with other tools. Our approach to achieving

model interoperability is to use ontologies for providing a common semantic basis to the models. The models share

a common RDF format, and ontologies are also expressed as RDF graphs using the OWL specification. We

discussed the commonalities and differences between the semantic mediation approach and that of the OSLC

initiative, which leads the way with the application of the W3C linked data to systems engineering. Using the

semantic mediation container (SMC), models can be mediated from some representation based on one ontology to

another representation based on another ontology. Only those elements that are common to the two mediated

languages and the tools in which they are expressed can be mediated. An intermediary ontology for these common

concepts can serve as a practical (though limited) “lingua franca”. Accordingly, a tool that can export its model

content in the RDF structure of SMC and associate it with ontology is capable of performing the first step of

interoperability. The rest of the data flow is accomplished through semantic mediation. We discussed the

considerations of building an ontology for a tool using examples of two different tools—Rhapsody for SysML and

OPCAT for OPM—both standards in the common domain of conceptual modeling for system design, the

foundational tenet of model-based systems engineering. For Rhapsody, the benefits gained from this step were

demonstrated in the SPRINT EU project, and are also applied in the DANSE EU project. For OPCAT this is only

the first step, and mediation to other ontologies is yet to be developed. As more tools take this initial step, the

interoperability among the tools with respect to model sharing will bring new benefits to the product development

lifecycle of complex systems.

6. Acknowledgments

This work is supported in part by the (completed) DANSE (Grant agreement no: 287716) EU 7th framework

programme project, and the completed SPRINT (Grant agreement no: 257909) EU 7th framework programme

projects, and the ongoing H2020 EU project PSYMBIOSYS (Grant agreement no: 636804).

References

1. A. L. Sangiovanni-Vincentelli. Quo Vadis, SLD? Reasoning about the Trends and Challenges of System Level Design. Proceedings of the

IEEE. 95:3.March 2007.

2. NASA STEP Central, ISO 10303, http://step.nasa.gov/.

3. EDIF Standard for Electronics Data Interchange, http://www.princeton.edu/~achaney/tmve/wiki100k/docs/EDIF.html.

4. Open Services for Lifecycle Collaboration (OSLC), http://open-services.net/.

5. R. Filding. Architectural Styles and the Design of Network-based Software Architectures. PhD Dessertation, 2000, University of California,

Irvine. http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

6. W3C World Wide Web Consortium. Linked Data - W3C. http://www.w3.org/standards/semanticweb/data.

7. C. Bizer, T. Heath and T. Berners-Lee. Linked data - The story so far. Int. J. Semant. Web Inf. Syst. 2009;5:1-22.

8. The IBM Jazz Integration Architecture (JIA). http://jazz.net/projects/DevelopmentItem.jsp?href=content/project/plans/jia-overview/index.htm.

9. SPRINT - Software Platform for Integration of Engineering and Things. http://www.sprint-iot.eu/.

10. DANSE - Designing for Adaptability and evolutioN in System of systems Engineering. http://www.danse-ip.eu/home.

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/EDIF.html
http://www.sprint-iot.eu/

 Uri Shani, Shmuela Jacobs, Niva Wengrowiz, Dov Dori 10

11. Rational® Rhapsody®. www-142.ibm.com/software/products/us/en/ratirhapfami/

12. SysML™ specification version 1.3. http://www.omg.org/spec/SysML/1.3/.

13. Wolfram SystemModeler. www.wolfram.com/system-modeler/.

14. Modelica Language Specification. Version 3.3. Modelica Association. 2010. May 9.
https://www.modelica.org/documents/ModelicaSpec33.pdf.

15. Unified Profile for the Department of Defense Architecture Framework (DoDAF) and the Ministry of Defence Architecture Framework

(MODAF). OMG Document Number: formal/2013-08-04. http://www.omg.org/spec/UPDM/Current.

16. D. Dori. Object-Process Methodology: A Holistic Systems Paradigm. Springer, Berlin, Heidelberg, New York, 2002.

17. S. Jacobs. Translating OPM System Models to RDF Format for Their Integration into the Sematic Web. M.Sc. Project Thesis. Information

Management Engineering, Technion, Israel, August 2014.

18. S. Jacobs, N. Wengrowicz and D. Dori. Exporting Object-Process Methodology System Models to the Semantic Web. IEEE International

Conference on Systems, Man, and Cybernetics. 2014.

19. Y. Grobshtein and D. Dori, Generating SysML Views from an OPM Model: Design and Evaluation. Systems Engineering, 14 (3), pp. 327-

340, 2011.

20. Y. Yaroker, V. Perelman, and D. Dori. An OPM Conceptual Model-Based Executable Simulation Environment: Implementation and

Evaluation. Systems Engineering, 16(4), pp. 381-390, 2013.

21. A. Sharon, O. de Weck, and D. Dori, Improving Project-Product Lifecycle Management with Model-Based Design Structure Matrix: A joint

project management and systems engineering approach. Systems Engineering, 16 (4), pp. 413-426, 2013.

22. A. Sharon and D. Dori, A Project-Product Model-Based Approach to Planning Work Breakdown Structures of Complex System Projects.

IEEE Systems Journal, 2014, Digital Object Identifier: 10.1109/JSYST.2013.2297491

23. Y. Mordecai and D. Dori, Model-Based Risk-Oriented Robust Systems Design with Object-Process Methodology. International Journal of

Strategic Engineering Asset Management, 1(4), pp. 331-354, 2013.

24. N. Wengrowicz, Y. J. Dori, and D. Dori, Transactional Distance in an Undergraduate Project-based Systems Modeling Course. Knowledge-

Based Systems 71, pp. 41-51, 2014.

25. J. Somekh, G. Haimovich, A. Guterman, D. Dori, and M. Choder, Conceptual Modeling of mRNA Decay Provokes New Hypotheses. PLoS

ONE 9(9): e107085. doi:10.1371/journal.pone.0107085.

26. D. Dori, I. Reinhartz-Berger and A. Sturm. Developing complex systems with object-process methodology using OPCAT. Lect. Notes

Comput. Sci. 2813:570-572. 2003.

27. Turtle - Terse RDF Triple Language. W3C Team Submission 28 March 2011. http://www.w3.org/TeamSubmission/turtle/.

28. Stanford Center for Biomedical Informatics Research at the Stanford University School of Medicine. Protégé. http://protege.stanford.edu/.

29. U. Shani, et al. Architectural principles for Internet of System Design. A SPRINT deliverable Feb 16, 2014. http://www.sprint-

iot.eu/public_deliverables/D_5_7.PU.Architectural%20principles%20for%20Internet%20of%20System%20Design%20and%20the%20IoT.p

df.

30. U. Shani, Final Report. A SPRINT project deliverable. March 17, 2014. http://www.sprint-

iot.eu/public_deliverables/D_5_11.PU.Final%20Report.pdf.

31. U. Shani, Daniel Wadler, Michael Wagner. Enginering Model Mediation Which Really Works. The 7th National Conference INCOSE_IL.

March 2013.

32. P. Aronsson, O. Tronarp, D. Hedberg. A Collaborative Platform for Systems Engineering Tools over the Internet with Connections to

Wolfram Systemmodeler. 7th MODPROD Workshop on Model-Based Product Development, February 2013.

33. U. Shani and A. Landau, Tools Interoperability Platform for Model-Based Systems-Engineering. MBSDPTI workshop SECOOP'13, July

2013.

34. OMG Meta Object Facility (MOF) Core Specification. Version 2.4.1, June 1, 2013, OMG Document Number formal/2013-06-01.

http://www.omg.org/spec/MOF/2.4.1.

35. FMI for Model Exchange and Co-Simulation. Version 2.0 specifications. July 25, 2014. https://www.fmi-standard.org/downloads#version2.

36. D. Dori, Words from Pictures for Dual Channel Processing: A Bimodal Graphics-Text Representation of Complex Systems. Communications

of the ACM, 51(5), pp. 47-52, 2008.

37. D. Dori, The Maturation of Model-Based Systems Engineering: OPM as the ISO Conceptual Modeling Language Standard. MIT SDM

Webinar, 2014. https://groups.google.com/forum/#!topic/astewg/0eGz3-fWHtQ

http://www-142.ibm.com/software/products/us/en/ratirhapfami/
http://www.wolfram.com/system-modeler/
http://www.omg.org/spec/UPDM/Current
http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?tp=&arnumber=6748857&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F4267003%2F4357939%2F06748857.pdf%3Farnumber%3D6748857
http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?tp=&arnumber=6748857&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F4267003%2F4357939%2F06748857.pdf%3Farnumber%3D6748857
http://dx.doi.org/10.1109/JSYST.2013.2297491
http://authors.elsevier.com/sd/article/S0950705114002238
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0107085
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0107085
http://protege.stanford.edu/
http://www.sprint-iot.eu/public_deliverables/D_5_7.PU.Architectural%20principles%20for%20Internet%20of%20System%20Design%20and%20the%20IoT.pdf
http://www.sprint-iot.eu/public_deliverables/D_5_7.PU.Architectural%20principles%20for%20Internet%20of%20System%20Design%20and%20the%20IoT.pdf
http://www.sprint-iot.eu/public_deliverables/D_5_7.PU.Architectural%20principles%20for%20Internet%20of%20System%20Design%20and%20the%20IoT.pdf
https://www.fmi-standard.org/downloads#version2
https://groups.google.com/forum/#!topic/astewg/0eGz3-fWHtQ

