IoT Systems Development Aspects with Executable OPM Models

Hanan Kohen, Dov Dori – Technion

Gordon – Jan 19-20 2021
GOAL:
Enhance model-based systems engineering (MBSE) to include all parts of an IoT system lifecycle.
Model-Based System Engineering
MBSE – Current state and future needs
MODEL-BASED SYSTEMS ENGINEERING (MBSE)

- SE covers the entire system lifecycle
 - Conceptual design
 - Prototyping
 - Testing
 - Manufacturing
 - **Using – Including Operating & Controlling in real time**
 - Maintaining
 - Retiring

- Conceptual modeling is the primary activity required for engineering systems to be understood, designed, and managed

- Using model-based approaches has numerous benefits
Hardware-Software Fusion: The Future of Systems Engineering

- What does SE need in order to remain relevant and drive the IoT systems vision forward?
 - We must use a language and a methodology that cater to modeling and architecting systems with the hardware-software fusion paradigm
Internet of Things (IoT) & IoRT

- Internet of Things (IoT) refers to the interconnection of everyday things, often accompanied by intelligence.
- A platform that interacts electronically, sharing specific information and data with the world around it.
- IoT applications are already being leveraged in diverse domains, such as
 - medical services, smart retail,
 - customer service, smart homes,
 - environmental monitoring, industrial internet.
- IoT is the enabler of IoRT – Internet of Robotic Things
 - Enables collaboration among robots.
What does MBSE need to be agile and IoT-ready?

- A conceptual modeling language and methodology
- Capable of modeling complex systems
- Include all of design and development aspects:
 - Design
 - Tradespace exploration
 - Optimization
 - Prototyping
- Treat hardware and software on equal footing
- Represent in the same and single kind of diagram the three system aspects:
 - Function
 - Structure
 - Behavior
- Include human in the loop
OPM & OPCODE

Web-based tool for modeling in OPM
Only two OPM Things: **Objects** and **Processes**

Object: A thing that exists or might exist physically or informatically.

Process: A thing that transforms or might transform one or more objects.

Charging changes Battery from depleted to charged.
\[\text{OPM} = \text{OPD} + \text{OPL} \]

OPL
- Global Warming is physical and systemic.
- Global Warming changes Quality Of Living of Human Group from high to low.
- Global Warming changes Temperature of Earth from low to high.
- Global Warming requires Greenhouse Gas Set.
- Global Warming affects Atmosphere and Earth.
- Solar Heat initiates Global Warming, which consumes Solar Heat.
- Global Warming yields Escaped Heat.
- Industrial & Private Activity is physical and environmental.
- Human Group handles Industrial & Private Activity.
- Industrial & Private Activity yields Greenhouse Gas Set.

OPD - Object Process Diagram

OPL - Object Process Language
Optimal Light Power Consumption System, s, is physical.
User is physical.
Electrical Power Consumption Level of User can be low or high.
Led Bulb is physical.
Room Surroundings Light Intensity is physical and environmental.
OPCloud main features

- **Cloud-based Application**
 - Ability to work from anywhere, any time

- **Collaboration**
 - Simultaneous work of multiple distributed users, one editor at a time with built-in edit right transfer

- **Connectivity**
 - with to other systems (DOORS, ARAS, PTC...) using OSLC

- **Latest Web Dev. Technologies:**
 - Firebase, Angular, Rappid...

- **Correctness-by-Construction**
 - via context sensitivity for choice of links and other features

- **Backward Compatibility**
 - for OPM models prepared with OPCAT
Optimal Light Power Consumption System Example
Optimal Light Power Consumption System Example

An example of a system including:

- Conceptual modeling
- Quantitative modeling
- Tradespace exploration
- Optimization
- Connections to external software systems (MATLAB/SIMULINK)
- Connecting to real hardware (sensors, microcontroller)
Optimal Light Power Consumption
System Textual Overview

• Initially, CDS sensors of the system measures the light intensity of the room.
• Then the microcontroller calculates the needed power to supply to the LED according to an algorithm to have the suitable light intensity for the room.
• Then, the amount of electrical power is delivered to the LED.
Optimal Light Power Consumption: OPM system model, top-level diagram
Tradespace exploration: Finding the optimal sensor configuration
Simulating - Value validation

- \([V_{\text{min}}..V_{\text{max}}]\) or \((V_{\text{min}}..V_{\text{max}})\)
- We can combine range with default : \([V_{\text{min}}..\text{dflt}..V_{\text{max}}]\)
- Multi range: \([\text{min1}..\text{max1}] , [\text{min1}..\text{max1}]\)
- Textual value range: "Present", "$\text{Absent}"
- "hard validation" or "soft validation"
Optimization

- Searching for the best system configuration on multi-objective problems
- Using Design-Structure Matrix (DSM) based methods
- Applying graph database querying using Neo4J integrated into OPCloud
Incorporating Hardware-in-the-Loop (HIL)
Hardware-in-the-Loop (HIL) simulation

- Hardware-in-the-Loop (HIL) simulation is a method for developing and testing embedded systems.
- Entails embedding parts of the real hardware during the system development.
- Allows to thoroughly test the complex control device in a virtual environment.
- Provides advantages of:
 - Earlier testing in the development process
 - Reduction of testing costs
 - Increase of test coverage
 - Better test repeatability.
OPM and Hardware-in-the-Loop (HIL)

- Methodical Approach to Executable Integrative Modeling (MAXIM) is integrated into and extends ISO 19450:2015 OPM.

- MAXIM enables seamless quantitative computations, embedded within the qualitative conceptual model.

- Using MAXIM, we incorporate hardware, specifically sensors and actuators, connected to Arduino into OPCloud computation and simulation capabilities.
The System Operating System Idea

- OPCloud
- Node Server
- Arduino Uno
- Arduino-OPCloud Controlled Device
- Connector Set
- Sensor Set
- Programmable Chip
- Arduino IDE
- Device Control Engineer
- Arduino Program
OPCloud-HIL Architecture

- The OPCloud extension can connect to any external hardware or software system:
 - Arduino, MATLAB/Simulink...
Model Execution with HIL
Conclusion
Extending MBSE to Use, Operating and Controlling

- The current practice is for MBSE to cover primarily the conceptual phase: problem formulation, requirements engineering, design
- We are extending MBSE from a conceptual modeling approach to cover the objective of the system – value providing through use.
- We seamlessly combine high-level, abstract conceptual and computational modeling with low-level, near real-time hardware, such as sensors and an Arduino controller
- The same OPM modeling paradigm is used all the way from highly abstract functions to down-to-earth operations.
- Answering all design needs and aspects.
- This enables performing all major system lifecycle stages, from modeling and architecting, via testing and implementing, to using, operating and controlling the actual system.
- This is a paradigm shift in the role of MBSE and its centrality
Thanks for listening!

Visit our Lab site:
http://esml.iem.technion.ac.il/

Experience OPCloud, Cloud-based OPM modeling:
https://www.opcloud.tech/

Contact us:

Tel: +972-77-8872441

OPCloud@technion.ac.il

Enterprise Systems Modeling Laboratory 121 Bloomfield, Technion - Israel Institute of Technology Haifa, 3200003 Israel